• Title/Summary/Keyword: Vibration Environmental Test

Search Result 317, Processing Time 0.024 seconds

Measurement and Control of Ground Vibrations due to Precast Concrete Pile-driving by Diesel Hammer (디젤해머에 의한 콘크리트말뚝 항타시(抗打時) 발생(發生)되는 지반진동(地盤振動)의 측정(測定) 및 영향평가(影響評價))

  • Park, Yean Soo;Chon, Chun Su
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.1
    • /
    • pp.71-78
    • /
    • 1989
  • This Paper measures and analyzes ground vibrations induced during precast concrete pile-driving using diesel hammer at radii varying from 9m to 30m to evaluate effects of such vibrations associated with deep foundation piling operations near the residential of commercial areas. From this study, characteristics for attenuation and frequency of the vibrations casued by pile-driving are established and the empirical equation for predicting peak velocity and acceleration levels are obtained. This equation can be used to predict the peak vibration levels and select the appropriate hammers for future projects where similar soil conditions to this test site are encountered.

  • PDF

Aerodynamic stability of iced stay cables on cable-stayed bridge

  • Li, Shouying;Wu, Teng;Huang, Tao;Chen, Zhengqing
    • Wind and Structures
    • /
    • v.23 no.3
    • /
    • pp.253-273
    • /
    • 2016
  • Ice accretions on stay cables may result in the instable vibration of galloping, which would affect the safety of cable-stayed bridges. A large number of studies have investigated the galloping vibrations of transmission lines. However, the obtained aerodynamics in transmission lines cannot be directly applied to the stay cables on cable-stayed bridges. In this study, linear and nonlinear single degree-of-freedom models were introduced to obtain the critical galloping wind velocity of iced stay cables where the aerodynamic lift and drag coefficients were identified in the wind tunnel tests. Specifically, six ice shapes were discussed using section models with geometric scale 1:1. The results presented obvious sudden decrease regions of the aerodynamic lift coefficient for all six test models. Numerical analyses of iced stay cables associated to a medium-span cable-stayed bridge were carried out to evaluate the potential galloping instability. The obtained nonlinear critical wind velocity for a 243-meter-long stay cable is much lower than the design wind velocity. The calculated linear critical wind velocity is even lower. In addition, numerical analyses demonstrated that increasing structural damping could effectively mitigate the galloping vibrations of iced stay cables.

Field measurement-based wind-induced response analysis of multi-tower building with tuned mass damper

  • Chen, Xin;Zhang, Zhiqiang;Li, Aiqun;Hu, Liang;Liu, Xianming;Fan, Zhong;Sun, Peng
    • Wind and Structures
    • /
    • v.32 no.2
    • /
    • pp.143-159
    • /
    • 2021
  • The 246.8-m-tall Beijing Olympic Tower (BOT) is a new landmark in Beijing City, China. Its unique architectural style with five sub-towers and a large tower crown gives rise to complex dynamic characteristics. Thus, it is wind-sensitive, and a double-stage pendulum tuned mass damper (DPTMD) has been installed for vibration mitigation. In this study, a finite-element analysis of the wind-induced responses of the tower based on full-scale measurement results was performed. First, the structure of the BOT and the full-scale measurement are introduced. According to the measured dynamic characteristics of the BOT, such as the natural frequencies, modal shapes, and damping ratios, an accurate finite-element model (FEM) was established and updated. On the basis of wind measurements, as well as wind-tunnel test results, the wind load on the model was calculated. Then, the wind-induced responses of the BOT with the DPTMD were obtained and compared with the measured responses to assess the numerical wind-induced response analysis method. Finally, the wind-induced serviceability of the BOT was evaluated according to the field measurement results for the wind-induced response and was found to be satisfactory for human comfort.

Behaviors of UHPC-filled Q960 high strength steel tubes under low-temperature compression

  • Yan, Jia-Bao;Hu, Shunnian;Luo, Yan-Li;Lin, Xuchuan;Luo, Yun-Biao;Zhang, Lingxin
    • Steel and Composite Structures
    • /
    • v.43 no.2
    • /
    • pp.201-219
    • /
    • 2022
  • This paper firstly proposed high performance composite columns for cold-region infrastructures using ultra-high performance concrete (UHPC) and ultra-high strength steel (UHSS) Q960E. Then, 24 square UHPC-filled UHSS tubes (UHSTCs) at low temperatures of -80, -60, -30, and 30℃ were performed under axial loads. The key influencing parameters on axial compression performance of UHSS were studied, i.e., temperature level and UHSS-tube wall thickness (t). In addition, mechanical properties of Q960E at low temperatures were also studied. Test results revealed low temperatures improved the yield/ultimate strength of Q960E. Axial compression tests on UHSTCs revealed that the dropping environmental temperature increased the compression strength and stiffness, but compromised the ductility of UHSTCs; increasing t significantly increased the strength, stiffness, and ductility of UHSTCs. This study developed numerical and theoretical models to reproduce axial compression performances of UHSTCs at low temperatures. Validations against 24 tests proved that both two methods provided reasonable simulations on axial compression performance of UHSTCs. Finally, simplified theoretical models (STMs) and modified prediction equations in AISC 360, ACI 318, and Eurocode 4 were developed to estimate the axial load capacity of UHSTCs at low temperatures.

Development of Ubiquitous Median Barrier System in the Highway (유비쿼터스 도로 중앙분리대 시스템 개발)

  • Jo, Byung-Wan;Park, Jung-Hoon;Yoon, Kwang-won;Kim, Heoun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4D
    • /
    • pp.499-507
    • /
    • 2009
  • A median barrier in the road is to separate driver and passenger the traffic flow in the 4-line over highway. In order to keep thee safety of and minimize the traffic jam in the traffic accidents, the ubiquitous intelligent median barrier system is proposed in this paper. This system is required to develop the sensor node fields in the median barrier, which detects the traffic accident using vibration sensors and wireless communication network. Free space test to sensing & receiving radio frequency, verification of middleware to report and countermeasure the accident intelligently to police and hospital are carried out.

Bayesian model update for damage detection of a steel plate girder bridge

  • Xin Zhou;Feng-Liang Zhang;Yoshinao Goi;Chul-Woo Kim
    • Smart Structures and Systems
    • /
    • v.31 no.1
    • /
    • pp.29-43
    • /
    • 2023
  • This study investigates the possibility of damage detection of a real bridge by means of a modal parameter-based finite element (FE) model update. Field moving vehicle experiments were conducted on an actual steel plate girder bridge. In the damage experiment, cracks were applied to the bridge to simulate damage states. A fast Bayesian FFT method was employed to identify and quantify uncertainties of the modal parameters then these modal parameters were used in the Bayesian model update. Material properties and boundary conditions are taken as uncertainties and updated in the model update process. Observations showed that although some differences existed in the results obtained from different model classes, the discrepancy between modal parameters of the FE model and those experimentally obtained was reduced after the model update process, and the updated parameters in the numerical model were indeed affected by the damage. The importance of boundary conditions in the model updating process is also observed. The capability of the MCMC model update method for application to the actual bridge structure is assessed, and the limitation of FE model update in damage detection of bridges using only modal parameters is observed.

Real-time estimation of responses and loads of real-scale pipes subjected to earthquakes and external loads using digital twin technology

  • Dongchang Kim;Shinyoung Kwag;Sung-Jin Chang;Seunghyun Eem
    • Smart Structures and Systems
    • /
    • v.33 no.5
    • /
    • pp.375-383
    • /
    • 2024
  • Infrastructure facilities contain various pipe systems, which can be considerably damaged by external loads such as earthquakes. Therefore, structural health monitoring (SHM) and safety assessment of pipes are crucial. Digital twin technology for SHM of pipes is important in the industry. This study proposes a digital twin system that estimates the behavior, stress, and external load of real-scale pipes in real time under simultaneous seismic and external loads using a minimum number of sensors. Vibration tests were performed to construct the digital twin system, and a numerical model was developed that considered the dynamic characteristics of a target pipe. Moreover, a reduced-order modeling technique of a numerical model was applied to enhance its real-time performance. The digital twin system successfully estimated the response of the pipe at all points. Verification of the digital twin system was performed by comparing it with the experimental parameters of a real-scale pipe. The proposed digital twin system can help enhance SHM and system's maintenance.

Detection of Cavities Behind Concrete Walls Using a Microphone (마이크로폰을 이용한 콘크리트 벽체 배면의 공동 탐사)

  • Kang, Seonghun;Lee, Jong-Sub;Han, WooJin;Kim, Sang Yeob;Yu, Jung-Doung
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.12
    • /
    • pp.19-28
    • /
    • 2022
  • Cavities behind concrete walls can adversely affect the stability of structures. Thus study aims to detect cavities behind concrete structures using a microphone in a laboratory model test. A small-scale concrete wall is constructed in a chamber, which is composed of a reinforced concrete plate and dry soil. A plastic bowl is then placed between the plate and soil to simulate a cavity behind the concrete structure. Leaky surface acoustic waves are generated by impacting the concrete plate using a hammer and are measured using a microphone. The measured signals are analyzed using natural frequencies, and cavity-free sections are evaluated. The test results show that the first natural frequency decreases at the cavity section due to the flexural vibration behavior of the plate. In addition, the amplitude corresponding to the first natural frequency decreases as the measurement location becomes farther from the cavity center and significantly decreases at the measurement locations near the rebars. This study demonstrates that a microphone may be useful to detect cavities behind concrete walls.

A Study on Accuracy Analysis and Application of Postion Tracking Technique for Worker Safety Management in Underground Space Construction Field (지하공간 건설시공현장에서의 작업자 안전관리를 위한 위치추적기술 정확도 분석 및 활용 연구)

  • Seol, Moonhyung;Jang, Yonggu;Son, Myungchan;Kang, Injoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.8
    • /
    • pp.45-51
    • /
    • 2013
  • In the construction site of underground buildings which have severe environment such as dust, noise, vibration, the technology of rescue the builders in the construction site when accident occurs by tracking the location of the builders and express the mission of supervisor smoothly. In this study, in order to acquire the location information of the builders in the construction site of underground buildings by using MEMS INS and air pressure sensor, we firstly performed the field test in construction site, analyzed the location and the elevation accuracy based on the detected results, and then verified its practicality and rationality after all. As a result, we could acquire worker's position-accuracy within 10m in horizontal direction and 4m in vertical direction. Therefore we could judge availability in construction fields of underground structure.

Non-linear dynamic assessment of low-rise RC building model under sequential ground motions

  • Haider, Syed Muhammad Bilal;Nizamani, Zafarullah;Yip, Chun Chieh
    • Structural Engineering and Mechanics
    • /
    • v.74 no.6
    • /
    • pp.789-807
    • /
    • 2020
  • Multiple earthquakes that occur during short seismic intervals affect the inelastic behavior of the structures. Sequential ground motions against the single earthquake event cause the building structure to face loss in stiffness and its strength. Although, numerous research studies had been conducted in this research area but still significant limitations exist such as: 1) use of traditional design procedure which usually considers single seismic excitation; 2) selecting a seismic excitation data based on earthquake events occurred at another place and time. Therefore, it is important to study the effects of successive ground motions on the framed structures. The objective of this study is to overcome the aforementioned limitations through testing a two storey RC building structural model scaled down to 1/10 ratio through a similitude relation. The scaled model is examined using a shaking table. Thereafter, the experimental model results are validated with simulated results using ETABS software. The test framed specimen is subjected to sequential five artificial and four real-time earthquake motions. Dynamic response history analysis has been conducted to investigate the i) observed response and crack pattern; ii) maximum displacement; iii) residual displacement; iv) Interstorey drift ratio and damage limitation. The results of the study conclude that the low-rise building model has ability to resist successive artificial ground motion from its strength. Sequential artificial ground motions cause the framed structure to displace each storey twice in correlation with vary first artificial seismic vibration. The displacement parameters showed that real-time successive ground motions have a limited impact on the low-rise reinforced concrete model. The finding shows that traditional seismic design EC8 requires to reconsider the traditional design procedure.