Acknowledgement
Supported by : National Natural Science Foundation of China, National Science Foundation
References
- Alto, P. (1979), EPRI Transmission Line Reference Book: Wind-Induced Conductor Motion, Electric Power Research Institute, California, USA.
- Cheng, S.H., Larose, G.L., Savage, M.G., Tanaka, H. and Irwin, P.A. (2008a), "Experimental study on the wind-induced vibration of a dry inclined cable-Part I: Phenomena", J. Wind Eng. Ind. Aerod., 96(12), 2231-2253. https://doi.org/10.1016/j.jweia.2008.01.008
- Cheng, S.H., Irwin, P.A. and Tanaka, H. (2008b), "Experimental study on the wind-induced vibration of a dry inclined cable-Part II: Proposed mechanisms", J. Wind Eng. Ind. Aerod., 96(12), 2254-2272. https://doi.org/10.1016/j.jweia.2008.01.007
- Demartino, C., Koss, H.H., Georgakis, C.T. and Ricciardelli, F. (2015), "Effects of ice accretion on the aerodynamics of bridge cables", J. Wind Eng. Ind. Aerod., 138, 98-119. https://doi.org/10.1016/j.jweia.2014.12.010
- Demartino, C. and Ricciardelli, F. (2015), "Aerodynamic stability of ice-accreted bridge cables", J. Fluid. Struct., 52, 81-100. https://doi.org/10.1016/j.jfluidstructs.2014.10.003
- Den Hartog, J.P. (1956), "Mechanical Vibrations", New York: McGraw-Hill.
- Farzaneh, M. (2008), Atmospheric icing of power networks, Springer, New York.
- Flamand, O. and Boujard, O. (2009), "A comparison between dry cylinder galloping and rain-wind induced vibration", Proceedings of the EACWE5, Florence, Italy.
- Fu, P., Farzaneh, M. and Bouchard, G. (2006), "Two-dimensional modeling of the ice accretion process on transmission line wires and conductors", Cold Regions Sci. Technol., 46(2), 132-146. https://doi.org/10.1016/j.coldregions.2006.06.004
- Gimsing, N.J. and Georgakis, C.T. (2012), Cable supported bridge: Concept and design, Wiley, Chichester, England.
- Gjelstrup, H. and Georgakis, C.T. (2011), "A quasi-steady 3 degree-of-freedom model for the determination of the onset of bluff body galloping instability", J. Fluid. Struct., 27(7), 1021-1034. https://doi.org/10.1016/j.jfluidstructs.2011.04.006
- Gjelstrup, H., Georgakis, C.T. and Larsen, A. (2012), "An evaluation of iced bridge hanger vibrations through wind tunnel testsing and quasi-steady theory", Wind Struct., 15(5), 385-407. https://doi.org/10.12989/was.2012.15.5.385
- Hikami, Y. and Shiraishi, N. (1988), "Rain-wind induced vibrations of cables in cable stayed bridges", J. Wind Eng. Ind. Aerod., 29, 409-418. https://doi.org/10.1016/0167-6105(88)90179-1
- Jones, N.P., Jain, A. and Pan, K. (1997), "Effect of stay cable vibration on buffeting response", Proceedings of the Structures Congress '97 ASCE, Portland.
- Kollar, L.E. and Farzaneh, M. (2010), "Wind-tunnel investigation of icing of an inclined cylinder", Int. J. Heat Mass Tran., 53(5-6), 849-861. https://doi.org/10.1016/j.ijheatmasstransfer.2009.11.039
- Koss, H.H., Henningsen, J.F. and Olsen, I. (2013), "Influence of icing on bridge cable aerodynamics", Proceedings of the 15th International Workshop on Atmospheric Icing of Structures (IWAIS XV), Session 6.
- Koss, H.H., Gjelstrup, H. and Georgakis, C.T. (2012), "Experimental study of ice accretion on ciicular cylinders at moderate low temperatures", J. Wind Eng. Ind. Aerod., 104-106, 540-546. https://doi.org/10.1016/j.jweia.2012.03.024
- Latforte, J.L., Phan, L.C. and Du, N.D. (1984), "Preliminary investigation on effect of wind speed fluctuations on ice accretions grown on fixed and rotating aluminium conductor", Proceedings of the 2nd Int. Workshop on Atmospheric Icing of Structures, Trondheim, Norway.
- Li, S.Y., Chen, Z.Q., Dong, G.C. and Luo, J.H. (2014), "Aerodynamic stability of stay cables incorporated with lamps: a case study", Wind Struct., 18(1), 83-101. https://doi.org/10.12989/was.2014.18.1.083
- Li, S.Y., Chen, Z.Q., Teng, W. and Kareem, A. (2013), "Rain-wind induced in-plane and out-of-plane vibrations of stay cables", J. Eng. Mech. - ASCE, 139(12), 1688-1698. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000612
- Lu, M.L., Popplewell, N. and Shah, A.H. (2000), "Freezing rain simulations for fixed, unheated conductor samples", J. Appl. Meteorol., 39(12), 2385-2396. https://doi.org/10.1175/1520-0450(2000)039<2385:FRSFFU>2.0.CO;2
- Macdonald, J.H.G. and Larose, G.L. (2006), "A unified approach to aerodynamic damping and drag/lift instabilities, and its application to dry inclined cable galloping", J. Fluid. Struct., 22(2), 229-252. https://doi.org/10.1016/j.jfluidstructs.2005.10.002
- Macdonald, J.H.G. and Larose, G.L. (2008a), "Two-degree-of-freedom inclined cable galloping - Part 1:General formulation and solution for perfectly tuned system", J. Wind Eng. Ind. Aerod., 96(3), 291-307. https://doi.org/10.1016/j.jweia.2007.07.002
- Macdonald, J.H.G. and Larose, G.L. (2008b), "Two-degree-of-freedom inclined cable galloping - Part 2:Analysis and prevention for arbitrary frequency ratio", J. Wind Eng. Ind. Aerod., 96(3), 308-326. https://doi.org/10.1016/j.jweia.2007.07.001
- Matsumoto M., Yagi, T., Shigemura, Y. and Tsushima, D. (2001), "Vortex-induced cable vibration of cable-stayed bridges at high reduced wind velocity", J. Wind Eng. Ind. Aerod., 89(7-8), 633-647. https://doi.org/10.1016/S0167-6105(01)00063-0
- Matsumoto, M., Yagi, T., Hatsuda, H., Shima, T., Tanaka, M. and Naito, H. (2010), "Dry galloping characteristics and its mechanism of inclined/yawed cables", J. Wind Eng. Ind. Aerod., 98(6-7), 317-327. https://doi.org/10.1016/j.jweia.2009.12.001
- Novak, M. and Tanaka, H. (1974), "Effect of turbulence on galloping instability", J. Eng. Mech. - ASCE, 100(1), 27-47.
- Parkinson, G.V. and Smith, J.D. (1964), "The square prism as an aeroelastic non-linear oscillator", Q. J. Mech. Appl. Math., 17, 225-239. https://doi.org/10.1093/qjmam/17.2.225
- Poots, G. (1996), Ice and snow accretion on structures, Research Studies Press Ltd., Somerset, UK.
- Simiu, E. and Scanlan, R.H. (1996),Wind effects on structures, Wiley, New York.
- Stumpf, P. (1994), "Determination of aerodynamic forces for iced single and twin-bundled conductors", M. Sc. Thesis, Department of Mechanical and Industrial Engineering, University of Manitoba.
- Wu, T., Kareem, A. and Li, S. (2013), "On the excitation mechanisms of rain-wind induced vibration of cables: Unsteady and hysteretic nonlinear features", J. Wind Eng. Ind. Aerod., 122, 83-95. https://doi.org/10.1016/j.jweia.2013.06.001
- Yu, P., Desai, Y.M., Shah, A.H. and Popplewell, N. (1993a), "Three-degree-of-freedom model for galloping, Part I: Formulation", J. Eng. Mech. - ASCE, 119(12), 2404-2425. https://doi.org/10.1061/(ASCE)0733-9399(1993)119:12(2404)
- Yu, P., Desai, Y.M., Popplewell, N. and Shah, A.H. (1993b), "Three-degree-of-freedom model for galloping, Part II: Solutions", J. Eng. Mech. - ASCE, 119(12), 2426-2448. https://doi.org/10.1061/(ASCE)0733-9399(1993)119:12(2426)
- Zuo, D., Jones, N.P. and Main, J.A. (2008), "Field observation of vortex- and rain-wind-induced stay-cable vibrations in a three-dimensional environment", J. Wind Eng. Ind. Aerod., 96(6-7), 1124-1133. https://doi.org/10.1016/j.jweia.2007.06.046
Cited by
- On the aerodynamic characteristics of stay cables attached with helical wires 2017, https://doi.org/10.1177/1369433217739707
- Unsteady Theoretical Analysis on the Wake-Induced Vibration of Suspension Bridge Hangers vol.24, pp.2, 2019, https://doi.org/10.1061/(ASCE)BE.1943-5592.0001339
- Aerodynamic interference between the cables of the suspension bridge hanger pp.2048-4011, 2019, https://doi.org/10.1177/1369433218820623
- Analysis of wind attack angle increments in wind tunnel tests for the aerodynamic coefficients of iced hangers vol.23, pp.4, 2020, https://doi.org/10.1177/1369433219876206
- Wind tunnel study of wake-induced aerodynamics of parallel stay-cables and power conductor cables in a yawed flow vol.30, pp.6, 2020, https://doi.org/10.12989/was.2020.30.6.617
- Chaotic evolutionary algorithms for dynamic instability enhancement vol.1781, pp.1, 2016, https://doi.org/10.1088/1742-6596/1781/1/012003
- Effects of Ice Surface and Ice Shape on Aerodynamic Characteristics of Crescent-Shaped Iced Conductors vol.34, pp.3, 2016, https://doi.org/10.1061/(asce)as.1943-5525.0001246