• Title/Summary/Keyword: Vibration Environmental Test

Search Result 316, Processing Time 0.029 seconds

Investigation on Structural Design and Impact Damage for a Small Wind Turbine Blade (소형 풍력발전기 블레이드의 구조설계 및 충격손상 안전성 연구)

  • Kong, Changduk;Choi, Suhyun;Park, Hyunbum
    • Journal of Aerospace System Engineering
    • /
    • v.2 no.2
    • /
    • pp.1-7
    • /
    • 2008
  • Recently the wind energy has been alternatively used as a renewable energy resource instead of the mostly used fossil fuel due to its lack and environmental issues. This work is to propose a structural design and analysis procedure for development of the low noise 100W class small wind turbine system which will be applicable to relatively low speed region like Korea and for the domestic use. Structural analysis including load cases, stress, deformation, buckling, vibration and fatigue life was performed using the Finite Element Method, the load spectrum analysis and the Miner rule. In order to evaluate the designed structure, the structural test was carried out and its test results were compared with the estimated results. In addition, the blade should be safe from the impact damage due to FOD(Foreign Object Damage) including the bird strike. In order to analize the bird strike penomena on the blade, MSC. Dytran was used, and the applied method Arbitrary Lagrangian-Eulerian was evalud by comparison with the previous study results.

  • PDF

Propagation characteristics of blast-induced vibration to fractured zone (파쇄영역에 따른 발파진동 전파특성)

  • Ahn, Jae-Kwang;Park, Duhee;Park, Ki-Chun;Yoon, Ji Nam
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.6
    • /
    • pp.959-972
    • /
    • 2017
  • In evaluation of blast-induced vibration, peak particle velocity (PPV) is generally calculated by using attenuation relation curve. Calculated velocity is compared with the value in legal requirements or the standards to determine the stability. Attenuation relation curve varies depending on frequency of test blasting, geological structure of the site and blasting condition, so it is difficult to predict accurately using such an equation. Since PPV is response value from the ground, direct evaluation of the structure is impractical. Because of such a limit, engineers tend to use the commercial numerical analysis program in evaluating the stability of the structure more accurately. However, when simulate the explosion process using existing numerical analysis program, it's never easy to accurately simulate the complex conditions (fracture, crushing, cracks and plastic deformation) around blasting hole. For simulating such a process, the range for modelling will be limited due to the maximum node count and it requires extended calculation time as well. Thus, this study is intended to simulate the elastic energy after fractured zone only, instead of simulating the complex conditions of the rock that results from the blast, and the analysis of response characteristics of the velocity depending on shape and size of the fractured zone was conducted. As a result, difference in velocity and attenuation character were calculated depending on fractured zone around the blast source appeared. Propagation of vibration tended to spread spherically as it is distanced farther from the blast source.

Structural monitoring of movable bridge mechanical components for maintenance decision-making

  • Gul, Mustafa;Dumlupinar, Taha;Hattori, Hiroshi;Catbas, Necati
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.3
    • /
    • pp.249-271
    • /
    • 2014
  • This paper presents a unique study of Structural Health Monitoring (SHM) for the maintenance decision making about a real life movable bridge. The mechanical components of movable bridges are maintained on a scheduled basis. However, it is desired to have a condition-based maintenance by taking advantage of SHM. The main objective is to track the operation of a gearbox and a rack-pinion/open gear assembly, which are critical parts of bascule type movable bridges. Maintenance needs that may lead to major damage to these components needs to be identified and diagnosed timely since an early detection of faults may help avoid unexpected bridge closures or costly repairs. The fault prediction of the gearbox and rack-pinion/open gear is carried out using two types of Artificial Neural Networks (ANNs): 1) Multi-Layer Perceptron Neural Networks (MLP-NNs) and 2) Fuzzy Neural Networks (FNNs). Monitoring data is collected during regular opening and closing of the bridge as well as during artificially induced reversible damage conditions. Several statistical parameters are extracted from the time-domain vibration signals as characteristic features to be fed to the ANNs for constructing the MLP-NNs and FNNs independently. The required training and testing sets are obtained by processing the acceleration data for both damaged and undamaged condition of the aforementioned mechanical components. The performances of the developed ANNs are first evaluated using unseen test sets. Second, the selected networks are used for long-term condition evaluation of the rack-pinion/open gear of the movable bridge. It is shown that the vibration monitoring data with selected statistical parameters and particular network architectures give successful results to predict the undamaged and damaged condition of the bridge. It is also observed that the MLP-NNs performed better than the FNNs in the presented case. The successful results indicate that ANNs are promising tools for maintenance monitoring of movable bridge components and it is also shown that the ANN results can be employed in simple approach for day-to-day operation and maintenance of movable bridges.

A study on Mass production stage Tank Battle Management System Environmental Stress Screening test method and application improvement based on Production process data (생산 공정 자료 기반 양산단계 전차 전장관리체계 환경 부하 선별 시험 방법 및 적용 개선에 관한 연구)

  • Kim, Jang-Eun;Shim, Bo-Hyun
    • Journal of Korean Society for Quality Management
    • /
    • v.43 no.3
    • /
    • pp.273-288
    • /
    • 2015
  • Purpose: In this study, we apply environmental stress screening (ESS) to battle management system (BMS) of a tank and use the ESS profile based on production process data, guided by MIL-HDBK-781/344/2164. Methods: To optimize ESS Profile of the BMS of a tank, we estimate ESS model parameters (e.g., defect density, screening strength) using primary production failure reporting and corrective action system (FRACAS) data of military supply contract firm. Results: First, we collect the Primary production FRACAS data of military supply contract firm. Second, we compute curve fitting approach to find patent defect density and latent defect density using FRACAS data. Third, we solve the equation of Defect Density(patent defect density + latent defect density)($D_{IN}$) and Screening Strength(SS) Using second step data. As a result of analysis according to the order, we calculate $D_{IN}$(Temperature stress case : 74.02, Vibration stress : 10.252) and : SS(Temperature stress case : 0.4632, Vibration stress : 0.4142) and confirm the Condition II-D based on MIL-HDBK-344. According to Condition II-D, it is necessary to modify existing ESS profile through decreasing the $D_{IN}$ and increasing the SS. Conclusion: Identification of defect causes through ESS approach reduce defect densities for production. It provides feedback to a lessons-learned data base to avoid similar problems on next generation tank BMS.

Case Study of Stress Concentration Ratio of Composite Ground Improved by Deep Cement Mixing Method (심층혼합처리공법으로 개량된 복합지반의 응력분담비에 대한 사례 연구)

  • Yoo, Wan-Kyu;Kim, Byoung-Il;Kim, Young-Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.7
    • /
    • pp.3216-3223
    • /
    • 2012
  • Deep cement mixing method (DCM) is one of the most effective improving methods for deep soft ground. The strength of soft soil can be increased in a short period of time with less noise and vibration. However, it is necessary to determine the stress transferring and concentration ratio of the composite soft ground for estimating the settlement behaviors. In this study, a model test was undertaken to investigate the stress distribution of the improved soil. Results of the model test shows that stresses were concentrated mainly on the improved areas by DCM and the concentration ratios (35.4, 28.6, 27.02) were obtained using several different techniques. These were well in accordance with other previous research results (26.52, 32.5).

Liquefaction Prevention and Damage Reduction Effect of Reinforcement by Sheet Pile Using 1-G Shaking Table Test (1-G 진동대 실험을 이용한 시트파일 보강재의 액상화 및 피해 방지 효과)

  • Sim, Sung Hun;Yoon, Jong Chan;Son, Su Won;Kim, Jin Man
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.5
    • /
    • pp.211-217
    • /
    • 2020
  • Earthquake preparedness has become more important with recent increase in the number of earthquakes in Korea, but many existing structures are not prepared for earthquakes. There are various types of liquefaction prevention method that can be applied, such as compaction, replacement, dewatering, and inhibition of shear strain. However, most of the liquefaction prevention methods are applied before construction, and it is important to find optimal methods that can be applied to existing structures and that have few effects on the environment, such as noise, vibration, and changes in underground water level. The purpose of this study is to estimate the correlation between the displacement of a structure and variations of pore water pressure on the ground in accordance with the depth of the sheet file when liquidation occurs. To achieve this, a shaking table test was performed for Joo-Mun-Jin standard sand and an earth pressure, accelerometer, pore water pressure transducer, and LVDT were installed in both the non-liquefiable layer and the liquefiable layer to measure the subsidence and excess pore water pressure in accordance with the time of each embedded depth. Then the results were analyzed. A comparison of the pore water pressure in accordance with Hsp/Hsl was shown to prevent lateral water flow at 1, 0.85 and confirmed that the pore water pressure increased. In addition, the relationship between Hsp/Hsl and subsidence was expressed as a trend line to calculate the expected settlement rate formula for the embedded depth ratio.

Analysis of Blasting Vibration at the Irregular Layered Structure Ground (불규칙한 층상구조 지반에서의 발파진동 분석)

  • Kim, Seung Hyun;Lee, Dong Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.5
    • /
    • pp.891-901
    • /
    • 2016
  • By comparing test blasting data experimented in three layered-structure polymorphic grounds to a geological profile, influence of blast vibration with respect to uncontrollable ground characteristics was analyzed. Inefficient blast have been performed without sufficient verifications or confirmations because insufficiencies with regard to experiments and data of blasting engineering on the layered structures to be irregularly repeated clinker layer consisted of volcanic clastic zones. It is difficult to quantify N values of clinkers within test blasting region because they have diverse ranges, or coverages. An absolute value of attenuation coefficient N in a field, estimated by blasting vibration predictive equation (SRSD), are lesser than criteria of a design instruction, meaning that vibrations caused by blast can spread far away, and the vibrational characteristics of blasting test No.1, indicating relatively small values, inferred by the geological profile, pressures of gas by the explosion may be lost into a widely distributed clinker layers by penetrating holes resulted from blast into vicinity of clinker layers located in bottom of soft rock layers at the moment of blast. As a result, amounts of spalling rocks are decreased by almost half. Also, ranges of primary frequencies in the fields are identified as similar to those of natural frequency of typical structures.

A Study on the Field Application of the Measurement Technique for Static Displacement of Bridge Using Ambient Vibration (상시 진동을 이용한 교량 정적 처짐 산정 기술의 현장 적용성 연구)

  • Sang-Hyuk Oh;Dae-Joong Moon;Kwang-Myong Lee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.355-363
    • /
    • 2023
  • In safety assessment of a aged bridge, dynamic characteristics and displacement are directly related to the rigidity of the structural system, especially displacement is the most important factor as the physical quantity that the bridge user can directly detect. However, in order to measure the displacement of the bridge, it is difficult to install displacement sensors at the bottom of the bridge and conduct traffic blocking and loading tests, resulting in increased costs or impossible measurements depending on the bridge's environment. In this study, a method of measuring the displacement of a bridge using only accelerometers without installing displacement sensors and ambient vibration without a loading test was proposed. For the analysis of bridge dynamic characteristics and displacement using ambient vibration, the mode shape and natural frequency of the bridge were extracted using a TDD technique known to enable quick analysis with simple calculations, and the unit load displacement of the bridge was analyzed through flexibility analysis to calculate static displacement. To verify this proposed technology, an on-site test was conducted on C Bridge, and the results were compared with the measured values of the loading test and the structural analysis data. As a result, it was confirmed that the mode shape and natural frequency were 0.42 to 1.13 % error ratio, and the maximum displacement at the main span was 3.58 % error ratio. Therefore, the proposed technology can be used as a basis data for indirectly determine the safety of the bridge by comparing the amount of displacement compared to the design and analysis values by estimating the displacement of the bridge that could not be measured due to the difficulty of installing displacement sensors.

Structural Damping Ratio of Steel Plate Concrete(SC) Shear Wall at the Low Stress Level Identified by Vibration Test (진동시험을 통한 강판콘크리트(SC) 전단벽의 저응력수준에서의 구조 감쇠비 규명)

  • Cho, Sung Gook;So, Gihwan;Kim, Doo Kie;Han, Sang Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.2
    • /
    • pp.255-264
    • /
    • 2015
  • Steel plate concrete (SC) structure has been developed as a new structural type. Rational damping value shall be determined for the seismic design of SC structure. This study evaluated damping ratio of SC structure through experiments. For the study, a SC shear wall specimen was constructed and dynamically tested on the shaking table. Acceleration time history responses measured from testing were converted to the transfer functions and analyzed by using experimental modal analysis technique. The structural damping ratio of the specimen was identified as 4% to critical. Considering the shaking table test was performed at the excitation level corresponding to the low stress level of the specimen, 4% could be suggested as a structural damping for design of SC structure for operating basis earthquake.

A Case Study on a Large Scale Borehole Test Blasting to Generate Man-made Earthquake (인공지진 발생을 위한 대규모 시추공 시험발파 사례연구)

  • Jeong, Ju-Hwan;Choi, Byung-Hee;Ryu, Chang-Ha;Min, Hyung-Dong;Choi, Hyung-Bin
    • Explosives and Blasting
    • /
    • v.27 no.2
    • /
    • pp.48-55
    • /
    • 2009
  • In the process of identifying the earth's crust structures to accurately locate the seismic epicenter, man-made earthquakes need to be generated. Such a large-scale ground vibration can be generated by a deep borehole blasting, but it can also accompany some environmental impacts on the surroundings. In this respect, a borehole test blasting was carried out to determine the maximum charge weight that could be used without affecting the various structures around the blast site. Total 400kg of gelatine-type dynamites was used in the test blast. As a result, a prediction equation for ground vibrations was derived from the measured data. With the allowable level of 3.0 mm/s for residential structures, the maximum charge weight was determined to be 677kg if military structures near the site were considered. But if the military structures were not considered, it was found that up to 2100kg of explosives could be used without affecting old houses in the nearby village.