• Title/Summary/Keyword: Vibration Comfort

Search Result 360, Processing Time 0.024 seconds

Modeling and Active Control of an Air-Cell Seat for Ride-Comfort Improvement (승차감 향상을 위한 에어셀시트의 모델링 및 능동제어)

  • Hong, Keum-Shik;Hwang, Su-Hwan;Hong, Kyung-Tae;Yoo, Wan-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.11
    • /
    • pp.1672-1684
    • /
    • 2004
  • In this paper, an active vibration control with the use of an air-cell seat for passenger cars is investigated. The roles of the air-cell inserted between the polyurethane foam of the seat and seat cover are first to extend the seat's capability to adopt various shapes of human body and to improve the ride-comfort against road disturbances. The air-cell seat is modeled as a 1-d.o.f. spring-damper system. Because an exact modeling of the air-cell itself is alomost impossible, its dynamic characteristics are analyzed through experiments. A road-adaptive gain-scheduled sky-hook control for the air-cell seat system is proposed. The skyhook gains are scheduled in such a way that the acceleration level transmitted to human body on various road conditions is minimized. Simulations and experimental results are provided.

A Study on the Sustainability of Compact Cities in Korea

  • Sun-Ju, KIM
    • The Journal of Economics, Marketing and Management
    • /
    • v.11 no.2
    • /
    • pp.13-22
    • /
    • 2023
  • Purpose: The purpose of this study is to examine the policy implications of establishing a compact city in Seoul, analyzing whether it is an appropriate and efficient eco-friendly housing supply alternative. Research design, data, and methodology: The analysis criteria include efficiency, safety, and comfort, with efficiency encompassing economic, energy, and public transport links' efficiency. Safety and comfort are aspects of eco-friendliness, housing safety, and improvement in living environments. Results: In terms of economic efficiency, compact cities are a less expensive option than purchasing land for housing construction. To increase energy efficiency, we plan to adopt eco-friendly energy sources. Transportation efficiency is high in locations near public transport stations. To enhance safety and comfort, we intend to create large-scale parks and forests in Seoul. To ensure residential safety, measures will be taken to reduce road vibration, vehicle noise, and scattering dust. Conclusions: Selecting an appropriate location that provides convenient public transportation is essential for creating a compact city for housing in a large city. Combining a compact and smart city is necessary, and implementing smart technologies is needed to prevent dust, noise, and vibrations, which are undesirable in a residential environment.

Investigation of Load Transfer Characteristics at Slab Joints In The Floating Slab Track by Equivalent Shear Spring Model (등가 전단 스프링 모델을 이용한 플로팅 슬래브궤도 연결부에서의 하중전달 특성 분석)

  • Jang, Seung-Yup;Ahn, Mi-Kyoung;Choi, Won-Il;Park, Man-Ho
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2838-2843
    • /
    • 2011
  • Recently, the floating slab track that can effectively mitigate the vibration and structure-borne noise is being discussed to be adopted. The floating slab track which is a track system isolated from the sub-structure by vibration isolators. Unsimilarly to conventional track and the slab deflection is large. Therefore, the running safety and ride comfort should be investigated. Especially at slab joint since the load cannot be transferred, the possibility that the dynamic behavior of track and train became unstable is high. Thus, in general dowel bar are often installed at slab joints. To determine the appropriate dowel ratio the load transfer characteristics should be investigated. In this study, dowel bar joint is modeled by equivalent shear spring and this model is verified by comparison with experimental results. Using the proven model, the load transfer efficiency and deflection at slab joint according to dowel ratio, and stiffness and spacing of vibration isolator were examined.

  • PDF

The Study on Improvement of Acoustic Performance for Automobile Sound-absorbing Materials Using Hollow Fiber (중공 섬유를 이용한 자동차 흡음재 성능 향상 연구)

  • Lee, Jung-Wook;Lee, Su-Nam;Shim, Jae-Hyun;Jung, Pan-Ki;Lee, Won-Ku;Bang, Byoung-Joo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.9
    • /
    • pp.850-857
    • /
    • 2011
  • Generally, sound-absorbing materials in vehicles are used for giving the comfort to passengers by reducing noise while driving. Materials of which targets are light weight, high performance, eco friendliness and recycling have been developed recently. In this study, sound-absorbing materials using PET(polyethylene terephthalate) hollow fibers to achieve the light weight and the high sound absorption performance are developed, and then evaluated to meet a requirement for the automotive components. The test results show that the acoustic performances of developed products having new fiber structure are better than those of the conventional product.

An Study on Vibration Characteristics of Automobile Al-alloy Wheel (자동차 알루미늄 합금 휠의 진동특성에 관한 연구)

  • Kim Byoung-Sam
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.3
    • /
    • pp.122-127
    • /
    • 2005
  • The styling of automobile wheels and their effect on vehicle appearance has increased in importance in recent years. The wheel designer has been given the task of insuring that a wheel design meets its engineering objectives without affecting the styling theme. The wheel and tire system is considered as a vehicle component whose dynamic modal information of the tire/wheel system are employed in the modal synthesis model of the vehicle. The vibration characteristics of a automobile wheel play an important role to judge a ride comfort and quality for a automobile. In this paper, the vibration characteristics of a Al-alloy and steel wheel for automobile are studied. Natural frequency, damping and mode shape are determined experimentally by frequency response function method. Results show that wheel material property, size and design are parameter for shift of natural frequency and damping.

Performance Evaluation of a Full Vehicle with Semi-active MR Suspension at Different Tire Pressure (타이어 압력 변화에 따른 MR 현가장치를 장착한 전체차량의 제어성능평가)

  • Kim, Hyung-Seob;Seong, Min-Sang;Choi, Seung-Bok;Kwon, Oh-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.11
    • /
    • pp.1067-1073
    • /
    • 2011
  • This paper presents the performance of a full vehicle MR suspension system at different tire pressure. The pressure of tire is related to tire stiffness, which is significantly affects the performance of suspension system. Therefore, in this research, the effectiveness of tire pressure on full vehicle MR suspension is evaluated. As a first step, the characteristic of tire with respect to pressure is experimentally tested and modeled. After that, the governing equation of MR damper and full vehicle MR suspension system are derived. The skyhook controller is implemented and the vibration control performance of full vehicle MR suspension is evaluated via simulation with respect to the tire pressure.

A Study on the Squeal Noise generated by Self-excited Vibration in Friction surface (마찰면에서 자여 진동에 의해 발생되는 스퀼 소음에 관한 연구)

  • 이해철
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.90-96
    • /
    • 1998
  • There are various noises generated by friction. Among the rest, eliminating squeal noise generated during braking is an important task for the improvement of vehicle passengers' comfort. The parameters affecting brake squeal noise are the material properties of the braking pad, the dynamic properties of the brake parts and the dimensions of the brake assemble etc. Also, the squeal noise changes its inherent form(i.e. its sound pressure level and its frequency) with the normal load and sliding speed. In this study, the characteristics of brake squeal noise generated by friction is analyzed experimentally. The experiment focused on the analysis of friction self-excited vibrationand squeal noise level. Friction self-excited vibration is caused by the dry friction between pads and rotor, and occurs as a function of their relative sliding speeds. And Friction self-excited vibration is raised the brake squeal noise.

  • PDF

Performance Evaluation of a Full Vehicle with Semi-Active MR Suspension at Different Tire Pressure (타이어 압력 변화에 따른 MR 현가장치를 장착한 전체차량의 제어성능평가)

  • Kim, Hyung-Seob;Seong, Min-Sang;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.337-342
    • /
    • 2011
  • This paper presents the performance of a full vehicle MR suspension system at different tire pressure. The pressure of tire is related to tire stiffness, which is significantly affects the performance of suspension system. Therefore, in this research, the effectiveness of tire pressure on full vehicle MR suspension is evaluated. As a first step, the characteristic of tire with respect to pressure is experimentally tested and modeled. After that, the governing equation of MR damper and full vehicle MR suspension system are derived. The skyhook controller is implemented and the vibration control performance of full vehicle MR suspension is evaluated via simulation with respect to the tire pressure.

  • PDF

An Experimental Study on the Squeal Noise Generated in Friction Surface of Disk Brake (디스크 브레이크의 마찰면에서 발생되는 스퀼소음에 관한 실험적 연구)

  • 이해철;이원평;차경옥
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.26-31
    • /
    • 2000
  • There are various noises generated by friction. Among the rest, eliminating squeal noise generated during braking is an important task for the improvement of vehicle passengers' comfort. The parameters affecting brake squeal noise are the material properties of the braking pad, the dynamic properties of the brake parts and the dimensions of the brake assembly etc. Also, the squeal noise changes its inherent form with the normal load and sliding speed. In this study, the characteristics of brake squeal noise generated by friction is analyzed experimentally. The experiment focused on the analysis of friction self-excited vibration and squeal noise level. Friction self-excited vibration is caused by the dry friction between pads and rotor, and occurs as a function of their relative sliding speeds. And Friction self-excited vibration is raised the brake squeal noise.

  • PDF

Ride Comfort Evaluation of Seat Suspension of Commercial Vehicle with MR Damper (MR 댐퍼를 장착한 상용차 시트 서스팬션의 승차감 평가)

  • Shin, Do-Kyun;Do, Xuan Phu;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.32-33
    • /
    • 2014
  • This paper presents control performances of a seat suspension system equipped with magnetorheological (MR) dampers using a new adaptive fuzzy sliding mode controller (FSMC). Adaptive fuzzy controller is formulated by considering the acceleration of the seat. It has been demonstrated that the proposed seat suspension system realized by the adaptive fuzzy sliding mode controller can provide effective performances such as reduced vibration.

  • PDF