• Title/Summary/Keyword: Viability Mechanism

Search Result 596, Processing Time 0.028 seconds

Sodium Salicylate(NaSaL) Induces Apoptosis of NCI-H1299 Lung Carcinoma Cells via Activation Caspase-3 Protease (NCI-H1299 폐암 세포주에서 Caspase-3 Protease 활성을 통한 Sodium Salicylate(NaSaL)의 세포고사)

  • Shim, Hyeok;Yang, Sei-Hoon;Bak, Sang-Myeon;Jeong, Eun-Taik
    • Tuberculosis and Respiratory Diseases
    • /
    • v.53 no.5
    • /
    • pp.485-496
    • /
    • 2002
  • Background : Nonsteroidal anti-inflammatory drugs (NSAIDs) are useful in the chemoprevention of colon cancers. Continuous NSAID use results in a 40% to 50% reduction in the relative risk of colorectal cancer. The precise mechanism by which NSAIDs prevent and/or cause the regression of colorectal tumors is not known. Some investigators have reported that certain NSAIDs induce apoptosis and alter the expression of the cell cycle regulatory genes in some carcinoma cells when administered at a relatively high concentration. However, the possibility of NSAIDs application as chemopreventive agents in lung cancers remains to be elucidated. To address this question, the human lung cancer cell line NCI-H1299 was used to investigate whether or not NSAIDs might induce the apoptotic death of NCI-H1299 cells. Methods : A viability test was carried out using a MTT assay. Apoptosis was measured by flow cytometric analysis and unclear staining(DAPI). The talytic activity of the caspase family was measured by the fluirigenic cleavage of biosubstrates. To define the mechanical basis of apoptosis, western blot was performed to analyze the expression of the death substrates(PARP and ICAD). Results : NaSaL significantly decreased the viability of the NCI-H1299 cells, which was revealed as apoptosis characterized by an increase in the $subG_0/G_1$ population and unclear fragmentation. The catalytic activity of caspase-3 protease began to increase after 24 Hr and reached a peak 30 Hr after treatment with 10 mM NaSaL. In contrast, caspase-6, 8, and 9 proteases did not have a significantly altered enzymatic activity. Consistent with activation of caspase-3 protease, NaSaL induced the cleavage of the protease biosubstrate. Conclusion : NaSaL induces the apoptotic death of NCI-H1299 human lung cancer cells via the activation of caspase-3 protease.

Effect of Moutan Cortex Radicis on gene expression profile of differentiated PC12 rat cells oxidative-stressed with hydrogen peroxide (모단피의 PC12 cell 산화억제 효과 및 neuronal 유전자 발현 profile 분석에 대한 연구)

  • Kim Hyun Hee;Rho Sam Woong;Na Youn Gin;Bae Hyun Su;Shin Min Kyu;Kim Chung Suk;Hong Moo Chang
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.2
    • /
    • pp.529-541
    • /
    • 2003
  • Yukmijihwang-tang has been widely used as an and-aging herbal medicine for hundred years in Asian countries. Numerous studies show that Yukmijihwangtang has anti-oxidative effect both in vivo and in vitro. It has been reported that Moutan Cortex Radicis extract (MCR) was the most effective herb in Yukmijihwang-tang on undifferentiated PC12 cells upon oxidative-stressed with hydrogen peroxide. The purpose of this study is to; 1) evaluate the recovery of neuronal damage by assessing the anti-oxidant effect of MCR on PC12 cells differentiated with nerve growth factor (NGF), 2) identify candidate genes responsible for anti-oxidative effect on differentiated PC12 cells by oligonucleotide chip microarray. PC12 cells, which were differentiated by treating with NGF, were treated without or with hydrogen peroxide in the presence or absence of various concentration of MCR. Cell survival was determined by using MTS assay. Measurement of intracellular reactive oxygen species (ROS) generation was determined using the H2DCFDA assay The viability of cells treated with MCR was significantly recovered from stressed PC12 cell. In addition, wide rage of concentrations of MCR shows dose-dependent inhibitory effect on ROS production in oxidative-stressed cells. Total RNAs of cells without treatment(Control group), only treated with H₂O₂ (stressed group) and treated with both H₂O₂ and of MCR (MCR group) were isolated, and cDNAs was synthesized using oligoT7(dT) primer. The fragmented cRNAs, synthesized from cDNAs, were applied to Affymetrix GeneChip Rat Neurobiology U34 Array. mRNA of Calcium/calmodulin-dependent protein kinase II delta subunit(CaMKII), neuron glucose transporter (GLUT3) and myelin/oligodendrocyte glycoprotein(MOG) were downregulated in Stressed group comparing to Control group. P2X2-5 receptor (P2X2R-5), P2X2-4 receptor (P2X2R-4), c-fos, 25 kDa synaptosomal attachment protein(SNAP-25a) and GLUT3 were downregulated, whereas A2 adenosine receptor (A2AR), cathechol-O-methyltransferase(COMT), glucose transporter 1 (GLUT1), EST223333, heme oxygenase (HO), VGF, UI-R-CO-ja-a-07-0-Ul.s1 and macrophage migration inhibitory factor (MIF) were upregulated in MCA group comparing to Control group. Expression of Putative potassium channel subunit protein (ACK4), P2X2A-5, P2X2A-4, Interferon-gamma inducing factor isoform alpha precursor (IL-18α), EST199031, P2XR, P2X2 purinoceptor isoform e (P2X2R-e), Precursor interleukin 18 (IL-18) were downregulated, whereas MOO, EST223333, GLUT-1, MIF, Neuronatin alpha, UI-R-C0-ja-a-07-0-Ul.s1, A2. adenosine receptor, COMT, neuron-specific enolase (NSE), HO, VGF, A rat novel protein which is expressed with nerve injury (E12625) were upregulated in MCR group comparing to Stressed group. The results suggest that decreased viability and AOS production of PC12 cell by H₂O₂ may be, at lease, mediated by impaired glucose transporter expression. It is implicated that the MCR treatment protect PC12 cell from oxidative stress via following mechanisms; improving glucose transport into the cell, enhancing expression of anti-oxidative genes and protecting from dopamine cytotoxicity by increment of COMT and MIF expression. The list of differentially expressed genes may implicate further insight on the action and mechanism behind the anti-oxidative effects of herbal extract Moutan Cortex Radicis.

Licochalcone C Induces Autophagy in Gefitinib-sensitive or-resistant Human Non-small Cell Lung Cancer Cells (Gefitinib-민감성 또는 내성 비소세포폐암 세포에서 Licochalcone C에 의한 자가포식 유도)

  • Oh, Ha-Na;Yoon, Goo;Chae, Jung-Il;Shim, Jung-Hyun
    • Journal of Life Science
    • /
    • v.29 no.12
    • /
    • pp.1305-1313
    • /
    • 2019
  • Licochalcone (LC), isolated from the roots of Glycyrrhiza inflata has multiple pharmacological effects including anti-inflammatory and anti-tumor activities. To date, Licochalcone C (LCC) has induced apoptosis and inhibited cell proliferation in oral and bladder cancer cells, but lung cancer has not yet been studied. In addition, no study reported LCC-induced autophagy in cancer until now. The present study was designed to investigate the effect of LCC on gefitinib-sensitive and -resistant lung cancer cells and elucidate the mechanism of its action. The 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay data showed that LCC significantly inhibited cell viability in non-small cell lung cancer (NSCLC) HCC827 (gefitinib-sensitive) and HCC827GR (gefitinib-resistant) cell lines. Interestingly, Annexin V/7-aminoactinomycin D double staining and cell cycle analysis showed an apoptosis rate within about 20% at the highest concentration of LCC. LCC induced G2/M arrest by reducing the expression of the cell cycle G2/M related proteins cyclin B1 and cdc2 in NSCLC cell lines. Treatment of LCC also induced autophagy by increasing the expression of the autophagy marker protein microtubule-associated protein 1 light chain 3 (LC3) and the protein autophagy-related gene 5 involved in the autophagy process. In addition, LCC increased the production of reactive oxygen species (ROS), and the cell viability was partially restored by treatment with the ROS inhibitor N-acetyl-L-cysteine. In western blotting analysis, the expression of cdc2 was increased and LC3 was decreased by the simultaneous treatment of NAC and LCC. These results indicate that LCC may contribute to anti-tumor effects by inducing ROS-dependent G2/M arrest and autophagy in NSCLC. In conclusion, LCC treatment may be useful as a potential therapeutic agent against NSCLC.

Effect of Phytoncide on Porphyromonas gingivalis (P. gingivalis에 대한 피톤치드의 항균효과)

  • Kim, Sun-Q;Shin, Mi-Kyoung;Auh, Q-Schick;Lee, Jin-Yong;Hong, Jung-Pyo;Chun, Yang-Hyun
    • Journal of Oral Medicine and Pain
    • /
    • v.32 no.2
    • /
    • pp.137-150
    • /
    • 2007
  • Trees emit phytoncide into atmosphere to protect them from predation. Phytoncide from different trees has its own unique fragrance that is referred to as forest bath. Phytoncide, which is essential oil of trees, has microbicidal, insecticidal, acaricidal, and deodorizing effect. The present study was performed to examine the effect of phytoncide on Porphyromonas gingivalis, which is one of the most important causative agents of periodontitis and halitosis. P. gingivalis 2561 was incubated with or without phytoncide extracted from Hinoki (Chamaecyparis obtusa Sieb. et Zucc.; Japanese cypress) and then changes were observed in its cell viability, antibiotic sensitivity, morphology, and biochemical/molecular biological pattern. The results were as follows: 1. The phytoncide appeared to have a strong antibacterial effect on P. gingivalis. MIC of phytoncide for the bacterium was determined to be 0.008%. The antibacterial effect was attributed to bactericidal activity against P. gingivalis. It almost completely suppressed the bacterial cell viability (>99.9%) at the concentration of 0.01%, which is the MBC for the bacterium. 2. The phytoncide failed to enhance the bacterial susceptibility to ampicillin, cefotaxime, penicillin, and tetracycline but did increase the susceptibility to amoxicillin. 3. Numbers of electron dense granules, ghost cell, and vesicles increased with increasing concentration of the phytoncide, 4. RT-PCR analysis revealed that expression of superoxide dismutase was increased in the bacterium incubated with the phytoncide. 5. No distinct difference in protein profile between the bacterium incubated with or without the phytoncide was observed as determined by SDS-PAGE and immunoblot. Overall results suggest that the phytoncide is a strong antibacterial agent that has a bactericidal action against P. gingivalis. The phytoncide does not seem to affect much the profile of the major outer membrane proteins but interferes with antioxidant activity of the bacterium. Along with this, yet unknown mechanism may cause changes in cell morphology and eventually cell death.

Effects of Pseudomonas fluorescens on Production of Several Inflammatory Mediators in the Human Alveolar Epithelial Cells. (재조합 단백질 생산에 이용되는 Pseudomonas fluorescens의 인체 폐포 상피세포의 염증성 인자들의 발현에 미치는 영향)

  • Yang, Hyun;Ryoo, Jung-Min;Park, Seung-Hwan;Choi, Hye-Jin;Kim, Na-Yeon;Cho, Hyung-Hoon;Ahn, Jung-Hoon;Moon, Yu-Seok
    • Journal of Life Science
    • /
    • v.18 no.4
    • /
    • pp.530-536
    • /
    • 2008
  • To investigate the molecular mechanism of the airway inflammation by Pseudomonas fluorescens, effects on the inflammatory mediators such as interleukin-8 (IL-8), cyclooxygenase-2 (COX-2), macophage inhibitory cytokine 1 (MIC-1) were assessed in the human alveolar epithelial cells. Exposure to P. fluorescens and its recombinant bacteria suppressed cellular viability in the A549 epithelial cells and pro-inflammatory cytokine interleukin-8 production. However, pro-inflammatory prostaglandin-producing COX-2 protein was not altered by P. fluorescens though its mRNA was slightly elevated. As the inhibitory cytokine for the pro-inflammatory mediators, MIC-1 expression was monitored in A549 cells. MIC-1 gene induction was not significantly enhanced but the protein processing was changed by exposure to P. fluorescens. Pro-protein form of MIC-1 (${\sim}40\;kD$) was cleaved into active form mature MIC-1 (${\sim}15\;kD$) and propeptide (${\sim}28\;kD$) by the bacteria exposure. MIC-1 activation can contribute to the suppression of cellular viability by P. fluorescens and can retard IL-8-induced monocyte recruitment. However, sustained activation of MIC-1 can mediate the tissue injury by P. fluorescens exposure.

Inhibitory Effect of Jeungaektang Water Extract on Nitric Oxide and Cytokine Production in Lipopolysaccharide - activated RAW 264.7 Cells (증액탕(增液湯) 물추출물이 LPS로 유도된 RAW 264.7 cell에서의 Nitric Oxide 및 Cytokine에 미치는 영향)

  • Ahn, Sun-June;Lee, Jong-Rok;Kim, Sang-Chan;Jee, Seon-Young
    • Herbal Formula Science
    • /
    • v.15 no.1
    • /
    • pp.163-173
    • /
    • 2007
  • Jeungaektang (JAT) is the herbal formula, has the effect of moistening the dryness by activating lung Qi and by nourishing Yin, has being used for dryness syndromes. Generally the herbal formulae for moistening dryness are used for exogenous or endogenous dryness syndromes. JAT has been clinically used for the treatment of endogenous dryness syndromes. It is composed of Scrophulariae Radix. Rehmanniae Radix and Liriopis Tuber. Recent studies showed that JAT has a protective effect against $CCl_{4}-induced$ hepatotoxicity and anti-inflammatory effects against ear swelling of mouse induced by Crotonis Fructus. However, the effect of JAT on the immunological activity was rarely studied. Therefore, this study evaluated the effects of JAT the regulatory mechanism of nitric oxide (NO) and cytokines in the lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. After the treatment of JAT water extract, cell viability was measured by MTT assay, NO production was monitored by measuring the nitrite content in culture medium. Cyclooxygenase-2 (COX -2) and inducible nitric oxide synthase (iNOS) were determined by immunoblot analysis, and levels of cytokine were analyzed by sandwich immunoassays. Results provided evidence that JAT inhibited the production of nitrite and nitrate ($0.1{\sim}1.0$ mg/ml), iNOS ($0.1{\sim}1.0$ mg/ml), $interleukin-1{\beta}$ ( $0.1{\sim}1.0$ mg/ml) and tumor necrosis $factor-{\alpha}$ ($0.1{\sim}1.0$ mg/ml) in RAW 264.7 cells activated with LPS. Furthermore, JAT inhibited the expression of COX-2 expression and production of prostagladin E2 ($0.1{\sim}1.0$ mg/ml). These findings suggest that JAT can produce anti-inflammatory effect, which may play a role in adjunctive therapy in Gram-negative bacterial infections.

  • PDF

Inhibitory Effect of Phellinus Igniarius water extract on TNF-$\alpha$, IL-1$\beta$, IL-6 and Nitric Oxide Production in lipopolysaccharide - activated Raw 264.7 cells (상황 물추출물이 LPS로 유도된 Raw 264.7 cell에서의 TNF-$\alpha$, IL-1$\beta$, IL-6 및 Nitric Oxide production에 미치는 영향)

  • Kim Sang Chan;Jung Youn Suk;Lee Jae Ryung;Kim Young Woo;Byun Boo Hyeong;Kwon Teag Kyu;Suh Seong Il;Byun Sung Hui;Kwon Young Kyu
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.3
    • /
    • pp.880-886
    • /
    • 2004
  • Phellinus igniarius has been clinically used for the treatment of hemorrhoidal fistula, dysmenorrhea and the prevention of cancer in traditional oriental medicine. Recent studies showed that Phellinus igniarius produced anti-cancer, anti-metastasis and immuno-modulatory effects, There is lack of studies regarding the effects of Phellinus igniarius on the immunological activities. The present study was conducted to evaluate the effect of Phellinus igniarius on the regulatory mechanism of cytokines and nitric oxide (NO) for the immunological activities in Raw 264,7 cells. After the treatment of Phellinus igniarius water extract, cell viability was measured by MTT assay, NO production was monitored by measuring the nitrite content in culture medium. COX-2 and iNOS were determined by Immunoblot analysis, and levels of cytokine were analyzed by sandwich immunoassays. Results provided evidence that Phellinus igniarius inhibited the production of nitrite and nitrate (NO), inducible nitric oxide synthase (iNOS), interleukin-1β (IL-1β) and interleukin-6 (IL-6), and the activation of phospholylation of inhibitor κBα (p-IκBα) in Raw 264.7 cells activated with lipopolysaccharide (LPS). These findings suggest that Phellinus igniarius can produce anti-inflammatory effect, which may play a role in adjunctive therapy in Gram-negative bacterial infections.

Dissemination of Perkinsus olseni is affected by the viability of Ruditapes philippinarum (급성 폐사 바지락 (Ruditapes philippinarum) 으로부터 Perkinsus olseni의 확산 기작)

  • Nam, Ki-Woong;Jeung, Hee-Do;Song, Jae-Hee;Choi, Kwang-Sik;Park, Kyung-Il
    • The Korean Journal of Malacology
    • /
    • v.31 no.4
    • /
    • pp.267-272
    • /
    • 2015
  • This study was conducted in order to elucidate the dissemination mechanism of P. olseni using field and laboratory experiments. For this purpose, we quantified the level of P. olseni infection in buried (healthy) and surfaced (gapped) R. philippinarum from a clam bed on Wi-do Island on the west coast of Korea. In addition, the levels of internal and released P. olseni cells from artificially infected (and later dead) R. philippinarum were monitored for 8 days using the RFTM-2 M NaOH lysis method. Our results indicate that P. olseni cells in buried R. philippinarum was $2,655,625{\pm}1,536,936cells/clam$; the level in gapped R. philippinarum was considerably lower, $28,203{\pm}24,889cells/clam$ (p < 0.05). In the laboratory experiment, the P. olseni cells remained in the host tissue 2 days after death was approximately 50% lower than the level of infection measured in living clams. The level dropped to 20% 4 days after death and to 1.5% 6 days after death; eight days after death, P. olseni cells were undetectable since the R. philippinarum flesh had completely decomposed. The level of released cells on the day of death was only 0.05% of the internal level in live R. philippinarum; however, the level increased to 2.3% 5 days after death then gradually decreased and no released cells were detected 8 days after death. Therefore, our laboratory experiment suggest that the low level of P. olseni infection observed in gapped R. philippinarum at Wi-do Island could be caused by lysis of the most of P. olseni cells during the decomposition of dead R. philippinarum tissues. Until the end of decomposition of R. philippinarum, 6.68% of the total amount of P. olseni was released within 8 days. Our study showed that the amount of P. olseni cells from dead host is a considerably higher level than naturally released from healthy R. philippinarum, suggesting that death of the host plays an important role in the dissemination of P. olseni.

Ectopic expression of Bcl-2 or Bcl-xL suppresses p-fluorophenylalanine-induced apoptosis through blocking mitochondria-dependent caspase cascade in human Jurkat T cells (Jurkat T 세포에 있어서 ρ-fluorophenylalanine에 의해 유도되는 세포자살의 Bcl-2 및 Bcl-xL에 의한 저해 기전)

  • Han, Kyu-Hyun;Oh, Hyun-Ji;Jun, Do-Youn;Kim, Young-Ho
    • Journal of Life Science
    • /
    • v.13 no.1
    • /
    • pp.118-127
    • /
    • 2003
  • $\rho$-Fluorophenylalanine (FPA), a phenylalanine analog, is able to induce apoptotic cell death of human acute leukemia Jurkat T cells. To better understand the mechanism by which FPA induces apoptotic cell death, the effect of ectopic expression of antiapoptotic proteins, Bcl-2 and Bcl-xL, on FPA-induced apoptosis was investigated by employing lurkat T cells transfected with Bcl-2 gene (JT/Bcl-2) or Bcl-xL gene (1/Bcl-xL) and Jurkat T cells transfected with vector (JT/Neo or J/Neo). When Jurkat T cells, JT/Neo or J/Neo, were exposed to FPA at concentrations ranging from 0.63 to 5.0 mM, the cell viability determined by MTT assay declined in a dose-dependent manner. In addition, apoptotic DNA fragmentation along with several apoptotic events such as caspase-8 activation, Bid cleavage, mitochondrial cytochrome c release, caspase-9 activation, caspase-3 activation, and degradation of PARP was induced. However, the FPA-induced cytotoxic effect, activation of caspase-8, and cleavage of Bid were significantly abrogated by ectopic expression of Bcl-2 or Bcl-xL. At the same time, there was marked reduction in the level of cytochrome c release from mitorhondria, caspase-9 activation, caspase-3 activation, and degradation of PARP. These results indicate that caspase-8 activation, Bid cleavage, and mitochondrial cytochrome c release with subsequent activation of the caspase cascade are negatively regulated by Bcl-2 or Bcl-xL, and are thus required for FPA-induced apoptosis in Jurkat T cells

Apoptotic Cell Death by Melittin through Induction of Bax and Activation of Caspase Proteases in Human Lung Carcinoma Cells (Bax의 발현증가 및 Caspase의 활성을 통한 봉독약침액 Melittin의 인체폐암세포 Apoptosis 유발에 관한 연구)

  • Ahn, Chang-beohm;Im, Chun-woo;Kim, Cheol-hong;Youn, Hyoun-min;Jang, Kyung-jeon;Song, Choon-ho;Choi, Yung-hyun
    • Journal of Acupuncture Research
    • /
    • v.21 no.2
    • /
    • pp.41-55
    • /
    • 2004
  • Objective : To investigate the possible molecular mechanism (s) of melittin as a candidate of anti-cancer drug, we examined the effects of the compound on the growth of human lung carcinoma cell line A549. Methods : Growth inhibitory study, flow cytometry analysis, SDS-polyacrylamide gel electrophoresis and Western blot analysis, RT-PCR and in vitro caspases activity assay were performed. Results : Melittin treatment declined the cell viability of A549 cells in a concentration-dependent manner, which was associated with induction of apoptotic cell death. Melittin treatment down-regulated the levels of Bcl-XS/L mRNA and protein expression of A549 cells, an anti-apoptotic gene, however, the those of Bax, a pro-apoptotic gene, were up-regulated. Melittin induced the proteolytic cleavage and activation of caspase-3 and caspase-9 protease in a dose-dependent manner without alteration of inhibitor of apoptosis proteins family and Akt expression. Western blot analysis and RT-PCR data revealed that the levels of tumor suppressor p53 and cyclin-dependent kinase inhibitor p21 were also remained unchanged. Conclusions : Taken together, these findings suggest that melittin-induced inhibition of human lung cancer cell growth is associated with the induction of apoptotic cell death via regulation of several major growth regulatory gene products, and melittin may have therapeutic potential in human lung cancer.

  • PDF