• Title/Summary/Keyword: Viability Mechanism

Search Result 596, Processing Time 0.022 seconds

Mechanism underlying Chios gum mastic-induced apoptosis on SCC25 human tongue squamous cell carcinoma cell line

  • Lee, Seung-Eun;Hur, Young-Joo;Kim, In-Ryoung;Kwak, Hyun-Ho;Kim, Gyoo-Cheon;Shin, Sang-Hun;Kim, Chul-Hoon;Park, Bong-Soo
    • International Journal of Oral Biology
    • /
    • v.34 no.2
    • /
    • pp.61-72
    • /
    • 2009
  • Chios gum mastic (CGM) is a resin produced from the stem and leaves of Pistiacia lentiscus L var chia, a plant which grows only on Chios Island in Greece. CGM has been used for many centuries as a dietary supplement and folk medicine for stomach and duodenal ulcers in many Mediterranean countries and is known also to induce cell cycle arrest and apoptosis in some cancer cells. In this study, we further investigated the induction and mechanisms underlying the apoptotic response to CGM treatment in the SCC25 human tongue squamous cell carcinoma cell line. The viability of SCC25 cells, human normal keratinocytes (HaCaT cells) and human gingival fibroblasts (HGF-1 cells), and the growth inhibition of SCC25 cells were assessed by MTT assay and clonogenic assay, respectively. Staining with Hoechst and hemacolor dyes and TUNEL assays were employed to detect SCC25 cells undergoing apoptosis. SCC25 cells were treated with CGM, and this was followed by western blotting, immunocytochemistry, confocal microscopy, FACScan flow cytometry, MMP activity and proteasome activity analyses. CGM treatment of SCC25 cells was found to result in a time- and dosedependent decrease in cell viability, a dose-dependent inhibition of cell growth, and apoptotic cell death. Interestingly, CGM showed a remarkable level of cytotoxicity in SCC25 cells but not in normal cells. Tested SCC25 cells also showed several lines of apoptotic manifestation. Taken together, our present findings demonstrate that CGM strongly inhibits cell proliferation by modulating the expression of G1 cell cycle-related proteins and induces apoptosis via the proteasome, mitochondria and caspase cascades in SCC25 cells.

Protective Effect of Ferments of Hot-water Extract Mixture from Rhodiola sachalinensis and Red Ginseng on Oxidative Stress-induced C2C12 Myoblast (C2C12 근육세포의 산화적 손상에 대한 홍경천-홍삼 추출물 혼합액 발효물의 보호효과)

  • Yoon, Bo-Ra;Kim, Young-Hyun;Lee, Jong-Seok;Hong, Hee-Do;Rhee, Young-Kyoung;Cho, Chang-Won;Kim, Young-Chan;Lee, Ok-Hwan
    • The Korean Journal of Food And Nutrition
    • /
    • v.26 no.3
    • /
    • pp.485-491
    • /
    • 2013
  • Rhodiola spp. and red ginseng have been used for food and medicinal applications in disease chemoprevention in many Asian countries. Increased oxidative stress by reactive oxygen species (ROS) has been proposed to be a major cause of muscle fatigue. The present study was designed to investigate the protective effects of a fermented hot-water extract mixture from Rhodiola sachalinensis and red ginseng (MFR) on cell damage and the antioxidant enzyme system in $H_2O_2$-induced oxidative stress in skeletal muscle cells. C2C12 myoblasts were treated with various concentrations of NFR (non-fermented Rhodiola sachalinensis extract), FR (fermented hot-water extract from Rhodiola sachalinensis) and MFR for up to 5 days after the standard induction of differentiation, followed by semi-quantitative RT-PCR. MFR treatment dose-dependently protected oxidative damage of C2C12 cells. The treatment with MFR also enhanced mRNA expressions of MyoD, Cu/Zn SOD, Mn-SOD and GPX up to 16%. These results indicate that MFR exerts an anti-oxidative effect through a mechanism (s) that may involve the up-regulation of antioxidant enzymes, which may be important for the cellular redox environment in muscle cells.

Protective Effects of Bojungbangam-tang Extracts on ECV304 Cell Cytotoxicity (보정방암탕 추출물의 혈관내피세포독성에 대한 방어효과)

  • Kwon, Kang-Beom;Kim, Eun-Kyung;Song, Mi-Young;Han, Mi-Jeong;Lee, Su-Yeop;Lee, Heon-Jae;Lee, Young-Rae;Ju, Sung-Min;Ryu, Do-Gon;Kim, Sung-Hoon;Jeon, Byung-Hun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.2
    • /
    • pp.404-407
    • /
    • 2007
  • This study was designed to investigate the protective effect of Bojungbangam-tang Ethanol Extracts (EBJT) on cisplatin and hydrogen peroxide-induced cytotoxicity of human endothelial cell line ECV304 cells. After cells were treated with cisplatin and hydrogen peroxide, MTT assay was performed for cell viability test. To explore the mechanism of cytotoxicity, we used the several measures of apoptosis to determine whether this processes was involved in cisplatin and hydrogen peroxide-induced cell damage in ECV304 cells. Also, cells were treated with EBJT and then, followed by the addition of cisplatin or hydrogen peroxide. Cisplatin or hydrogen peroxide decreased the viability of ECV304 cells in a dose-dependent manner. ECV304 cells treated cisplatin or hydrogen peroxide were revealed as apoptosis characterized by nuclear staining. EBJT protected ECV304 cells from cisplatin or hydrogen peroxide-induced nuclear fragmentation and chromatin condensation. Also, EBJT inhibited the cleavage of poly(ADP-ribose) polymerase (PARP) in cisplatin or hydrogen peroxide-treated ECV304 cells. According to above results, EBJT may protect ECV304 cells from the apotosis induced by cisplatin or hydrogen peroxide.

Cordycepin Induced Apoptosis via Intracellular Ca2+ Modulation and Mitochondrial Dysfunction in Human Prostate Cancer PC-3 Cells (전립선암 세포주인 PC-3에서 cordycepin에 의해 유도된 세포 내 칼슘농도 변화와 미토콘드리아 기능 상실을 통한 세포사멸 유도)

  • Kang, Dong-Min;Kim, Kwang-Youn;Yu, Sun-Nyoung;Jin, Young-Rang;Jeon, Hyun-Joo;Kim, Sang-Hun;Chun, Sung-Sik;Ko, Hack-Ryong;Ahn, Soon-Cheol
    • Journal of Life Science
    • /
    • v.21 no.3
    • /
    • pp.451-458
    • /
    • 2011
  • Cordycepin (3'-deoxyadenosine), a nucleoside derivative isolated from Cordyceps militaris, is reported to have antitumor effects. However, neither its molecular mechanism nor its molecular targets are well understood. In the present study, molecular mechanisms for the anti-tumor effects of cordycepin were investigated in human prostate cancer PC-3 cells. The MTT assay was used to detect cell viability. Annexin V/FITC assay, reactive oxygen species (ROS) production, mitochondrial membrane potential (MMP), and $Ca^{2+}$ flux were used to assess for the presence of apoptosis. Western blot analysis was used to detect protein expression. Treatment of cordycepin resulted in significantly decreased cell viability of PC-3 cells in a dose- and time-dependent manner. A dose-dependent apoptotic cell death was also measured by flow cytometery analysis. Molecular mechanistic studies of apoptosis unraveled cordycepin treatment resulted in significant mitochondrial dysfunction, ROS production, and elevation of $Ca^{2+}$ concentrations. These phenomena were followed activation of caspase-3, subsequently leading to PARP cleavage and cell apoptosis. Taken together, cordycepin induces apoptosis in PC-3 cells through regulation of a mitochondrial mediated pathway.

Repression of Cathepsin D Expression in Adipocytes by MicroRNA-145 (지방세포에서 microRNA-145에 의한 Cathepsin D의 발현 제어)

  • Kim, Hyun-Ji;Bae, In-Seon;Seo, Kang-Seok;Kim, Sang Hoon
    • Journal of Life Science
    • /
    • v.24 no.7
    • /
    • pp.798-803
    • /
    • 2014
  • Cathepsin D (CtsD), an aspartyl peptidase, is involved in apoptosis, resulting in the release of cytochrome C from mitochondria in cells. Here, we investigated microRNA regulation of CtsD expression in 3T3-L1 cells First, we observed the expression of CtsD in cells in response to doxorubicin (Dox). As expected, the level of CtsD mRNA was increased in 3T3-L1 cells exposed to Dox in a dose-dependent manner. Cellular viability of ectopically expressed CtsD cells was also decreased. Next, we used the miRanda program to search for particular microRNA targeting CtsD. MiR-145 was selected as a putative controller for CtsD because miR-145 had a high mirSVR score. In a reporter assay, the luciferase activity of cells containing the CtsD 3'-UTR region was decreased in cells transfected with miR-145 mimic compared to that of a control. The level of CtsD expression was down-regulated in preadipocytes ectopically expressing miR-145 and up-regulated by an miR-145 inhibitor. Cells also suppressed miR-145 expression when exposed to Dox. The miR-145 inhibitor reduced the cellular viability of 3T3-L1 cells. Taken together, these data suggest that miR-145 regulates CtsD-mediated cell death in adipocytes. These findings may have valuable implications concerning the molecular mechanism of CtsD-mediated cell death in obesity, suggesting that CtaD could be a useful therapeutic tool for the prevention and treatment of obesity by regulating fat cell numbers.

Effects of Zizyphi Spinosae Extract on Cisplatin and t-Butylhydroperoxide Induced Acute Renal Failure in Rabbits (토끼에서 cisplatin에 의해 유도된 급성 신부전시 산조인 추출물의 효과)

  • Kim, Jae Young;Kim, Chung Hui
    • Journal of Life Science
    • /
    • v.24 no.7
    • /
    • pp.777-783
    • /
    • 2014
  • Cathepsin D (CtsD), an aspartyl peptidase, is involved in apoptosis, resulting in the release of cytochrome C from mitochondria in cells. Here, we investigated microRNA regulation of CtsD expression in 3T3-L1 cells. First, we observed the expression of CtsD in cells in response to doxorubicin (Dox). As expected, the level of CtsD mRNA increased in 3T3-L1 cells exposed to Dox in a dose-dependent manner. The cellular viability of ectopically expressed CtsD cells was decreased. Next, we used the miRanda program to search for particular microRNA targeting CtsD. MiR-145 was selected as a putative controller of CtsD because it had a high mirSVR score. In a reporter assay, the luciferase activity of cells containing the CtsD 3'-UTR region decreased in cells transfected with a miR-145 mimic compared to that of a control. The level of CtsD expression was down-regulated in preadipocytes ectopically expressing miR-145 and up-regulated by an miR-145 inhibitor. Cells also suppressed miR-145 expression when exposed to Dox. The miR-145 inhibitor reduced the cellular viability of 3T3-L1 cells. Taken together, these data suggest that miR-145 regulates CtsD-mediated cell death in adipocytes. These findings may have valuable implications concerning the molecular mechanism of CtsD-mediated cell death in obesity, suggesting that CtsD could be a useful therapeutic tool for the prevention and treatment of obesity by regulating fat cell numbers.

Molecular Biological Study of Anti-cancer Effects of Bee Venom on Human Melanoma Cell (약침용봉독액(藥鍼用蜂毒液)이 흑색종세포(黑色腫細胞)에 미치는 항암효과(抗癌效果)에 대(對)한 분자생물학적(分子生物學的) 연구(硏究))

  • Park, Chan-Yol;Nam, Sang-Soo;Kim, Chang-Hwan;Lee, Jae-Dong;Kang, Sung-Keel;Lee, Yun-Ho;Ahn, Byoung-Choul
    • Journal of Acupuncture Research
    • /
    • v.17 no.2
    • /
    • pp.169-186
    • /
    • 2000
  • To study anti-cancer effect and molecular biological mechanism of bee venom for aqua-acupuncture, the effects of bee venom on cell viability, apoptosis, and cell cycle were analyzed using MTT assay, tryphan blue assay, [3H]thymidine release assay, flow cytometric analysis, activity of caspase-3 protease activity assay, and immunocytometric analysis of PCNA. To explore whether anti-cancer effects of bee venom are associated with the transcriptional control of gene expression, quantitative RT-PCR analysis of apoptosis- and cell cycle-related genes was performed. The obtained results are summarized as follows: 1. The MTT assay demonstrated that cell viability was decreased by bee venom in a dose-dependant manner. 2. Significant induction of apoptosis was identified using tryphan blue assay, [$^3H$]thymidine release assay, and flow cytometric analysis of sub $G_1$ fraction. 3. In analysis of caspase-3 protease activity, the activity had increased significantly, in a dose-dependant manner. 4. Quantitative RT-PCR analysis of the apoptosis-related genes showed that Bcl-2 and $Bcl-X_L$ were down-regulated whereas Bax was up-regulated by bee venom treatment. 5. In flow cytometric analysis of cell cycle and immunocytometric analysis of PCNA expression, cell numbers of $G_1$ phase was increased by a dose-dependant manner. 6. In quantitative RT-PCR analysis of the cell cycle-related genes, p21, p27, and p57 were increased, while Cyclin D1, CDK4, c-Myc, c-Fos, and Histone H3 were decreased. In contrast, there were no remarkable changes in expression levels of CDC2 and c-Jun.

  • PDF

Snake Venom-enhanced Cytotoxic Effect of Natural Killer Cells on A549 Human Lung Cancer Cell Growth (사독의 인체 폐암세포(A549)에 대한 Natural Killer 세포 세포독성 촉진 효과)

  • Lee, Ji In;Song, Ho Sueb
    • Journal of Acupuncture Research
    • /
    • v.32 no.1
    • /
    • pp.79-88
    • /
    • 2015
  • Objectives : The purpose of this research was to investigate the cytotoxic effect of Natural Killer(NK)-92 cell and Snake Venom, and to elucidate its mechanism on human lung carcinoma cell A549. Methods : In order to figure out whether Snake Venom enhances the cytotoxic effect of NK-92 cell in A549 cell, Cell Viability Assay was conducted. Also, in order to observe the changes of Caspase-3 and Caspase-8, both of which are proteinases that advance apoptosis, and the changes of TNRF and DR3, which are Death Receptors of the extrinsic pathway of apoptosis, Western Blot Analysis was conducted. By conducting RT-PCR analysis, we have tried to confirm Perforin, Granzyme B, and GADPH, all of which are cytotoxic-related proteins. Lastly, in order to observe the effect of Snake Venom on NO formation within human lung carcinoma cells, NO determination was conducted. Results : 1. After conducting Cell Viability Assay, Snake Venom enhanced the cytotoxic effect of NK-92 cell and inhibited the growth of A549. 2. Western Blot Analysis caused proteinases Caspase-3 and Caspase-8, which advance apoptosis, to increase in the combined treatment group, but not in treatment groups that focused only on either Snake Venom or NK-92 cell in A549 lung carcinoma cells. 3. Western Blot Analysis caused an expression of TNFR2 and DR3, both of which are Death Receptors of the apoptosis extrinsic pathway, in the combined treatment group, but not intreatment groups that focused only on either Snake Venom or NK-92 cell in A549 human lung carcinoma cells. 4. After conducting NO determination, NO formation within A549 cell showed no significant changes in both treatment groups that focused NK-92 cell and combined treatment group. 5. After conducting RT-PCR, the expression of Granzyme B and Perforin, which are cytotoxic-related proteins within A549 human lung carcinoma cells, showed growth in the combined treatment group, but not the treatment group that focused only on NK-92 cell. Conclusion : It has been indicated that, when it comes to the A549 cell, Snake Venom enhances the increase of Death Receptor expression and continuous apoptosis reaction, leading to the enhancement of the cancer cell cytotoxic effect of the NK-92 cell. It is expected that Snake Venom can be used with the NK-92 cell for further lung cancer treatment.

Protective Effect of Propofol against Hypoxia-reoxygenation Injury in HaCaT Human Keratinocytes

  • Kim, Yong-Ho;Kang, Jin-Mo;Kim, In-Ryoung;Lee, Bo-Young;Yoon, Ji-Young;Kim, Cheul-Hong;Park, Bong-Soo
    • International Journal of Oral Biology
    • /
    • v.39 no.2
    • /
    • pp.97-105
    • /
    • 2014
  • The aim of this study was to determine the beneficial effect of propofol on human keratinocytes that have undergone hypoxia reoxygenation (H/R) injury and to investigate whether autophagy is associated with the protective mechanism. Thus, we evaluated how propofol influences the intracellular autophagy and apoptosis during the H/R process in the HaCaT cells. The cultured human keratinocyte cells were exposed to 24 h of hypoxia (5% $CO_2$, 1% $O_2$, 94% $N_2$) followed by 12 h of reoxygenation (5% $CO_2$, 21% $O_2$, 74% $N_2$). The experiment was divided into 4 groups: (1) Control=Normoxia ; (2) H/R=Hypoxia Reoxygenation ; (3) PPC+H/R=Propofol Preconditioning+Hypoxia Reoxygenation; (4) 3-MA+PPC+ H/R=3-MA-Methyladenine+Propofol Preconditioning+ Hypoxia Reoxygenation. In addition, Western blot analysis was performed to identify the expression of apoptotic pathway parameters, including Bcl-2, Bax, and caspase 3 involved in mitochondrial-dependent pathway. Autophagy was determined by fluorescence microscopy, MDC staining, AO staining, and western blot. The H/R produced dramatic injuries in keratinocyte cells. In our study, the viability of Propofol in H/R induced HaCaT cells was first studied by MTT assay. The treatment with 25, 50, and $100{\mu}M$ Propofol in H/R induced HaCaT cells enhanced cell viability in a dose-dependent manner and $100{\mu}M$ was the most effective dose. The Atg5, Becline-1, LC3-II, and p62 were elevated in PPC group cells, but H/R-induced group showed significant reduction in HaCaT cells. The Atg5 were increased when autophagy was induced by Propofol, and they were decreased when autophagy was suppressed by 3-MA. These data provided evidence that propofol preconditioning induced autophagy and reduced apoptotic cell death in an H/R model of HaCaT cells, which was in agreement with autophagy playing a very important role in cell protection.

Protective effect of Korean Red Ginseng against FK506-induced damage in LLC-PK1 cells

  • Lee, Dahae;Kang, Ki Sung;Yu, Jae Sik;Woo, Jung-Yoon;Hwang, Gwi Seo;Eom, Dae-Woon;Baek, Seung-Hoon;Lee, Hye Lim;Kim, Ki Hyun;Yamabe, Noriko
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.284-289
    • /
    • 2017
  • Background: Compound FK506 is an immunosuppressant agent that is frequently used to prevent rejection of solid organs upon transplant. However, nephrotoxicity due to apoptosis and inflammatory response mediated by FK506 limit its usefulness. In this study, the protective effect of Korean Red Ginseng (KRG) against FK506-induced damage in LLC-PK1 pig kidney epithelial cells was investigated. Methods: LLC-PK1 cells were exposed to FK506 with KRG and cell viability was measured. Western blotting and RT-PCR analyses evaluated protein expression of MAPKs, caspase-3, and KIM-1. TLR-4 gene expression was assessed. Caspase-3 activities were also determined. The number of apoptotic cells was measured using an image-based cytometric assay. Results: The reduction in LLC-PK1 cell viability by $60{\mu}M$ FK506 was recovered by KRG cotreatment in a dose-dependent manner. The phosphorylation of p38, p44/42 MAPKs (ERK), KIM-1, cleaved caspase-3, and TLR-4 mRNA expression was increased markedly in LLC-PK1 cells treated with $60{\mu}M$ FK506. However, with the exception of p-ERK, elevated levels of p-p38, KIM-1, cleaved caspase-3, and TLR-4 mRNA expression were significantly decreased after cotreatment with KRG. Activity level of caspase-3 was also attenuated by KRG cotreatment. Moreover, image-based cytometric assay showed that apoptotic cell death was increased by $60{\mu}M$ FK506 treatment, whereas it was decreased after cotreatment with KRG. Conclusion: Taken together, these results suggest that the molecular mechanism of KRG in the FK506-induced nephrotoxicity may lead to the development of an adjuvant for the inhibition of adverse effect FK506 in the kidney.