• Title/Summary/Keyword: Viability Mechanism

Search Result 596, Processing Time 0.024 seconds

Systems Pharmacological Approach to Identification of Schizonepeta teunifolia Extract via Active Ingredients Analysis and Cytotoxicity Effect on A549 Cell Lines (형개 추출물의 시스템 약리학적 분석과 비소세포폐암세포에 대한 증식 억제효과)

  • Ga Ram Yang;Ji Eun Choo;Youn Sook Kim;Won Gun Ahn
    • Korean Journal of Acupuncture
    • /
    • v.41 no.1
    • /
    • pp.7-15
    • /
    • 2024
  • Objectives : This study aimed to predict the effectiveness and potential of Schizonepeta tenuifolia as an anticancer treatment for non-small cell lung cancer through network-based pharmacology and cellular experiment. Methods : To identify the major bioactive compounds in Schizonepeta tenuifolia, we used the Traditional Chinese Medicine Systems. The target genes for the cancer treatment were selected using the UniProt database and the networked using Cytoscape. We performed functional enrichment analysis based on the Gene Ontology Biological Process and Kyoto Encyclopedia of Genes and Genomes Pathways to predict the mechanisms. To investigate the effect of Schizonepeta tenuifolia on lung cancer cell growth, we treated A549 cells, a lung cancer cell line, with different concentrations of the drug and used the MTT assay for cell viability. Results : Research has shown that the most effective mechanism of active compounds from Schizonepeta tenuifolia is through the pathway of cancer. The results of the network pharmacology analysis indicate that Schizonepeta tenuifolia has potential medicinal value as an adjuvant in anticancer treatment. The concentration-dependent inhibition of cell viability was observed on A549 cells. Furthermore, synergistic anticancer activity with Doxorubicin was also observed. Conclusions : Through a network pharmacological approach, Schizonepeta tenuifolia was predicted to have potential as an anticancer agent, and its efficacy was experimentally demonstrated using A549 cells. These findings suggest that Schizonepeta tenuifolia is a promising candidate for future research.

7-Ketocholesterol Induces Vascular Smooth Muscle Cell Apoptosis via Akt Degradation (7-Ketocholesterol에 의한 Akt 감소와 혈관평활근세포의 세포자멸사)

  • Seo, Kyo Won;Kim, Chi Dae;Lee, Won Suk
    • Journal of Life Science
    • /
    • v.26 no.2
    • /
    • pp.226-233
    • /
    • 2016
  • Vascular smooth muscle cell (VSMC) apoptosis has been identified in various vascular diseases, including atherosclerosis and restenosis after angioplasty, and has been known to precipitate atherosclerotic plaque instability and rupture. Oxysterols are known as inducers of apoptosis in VSMC, and 7-ketocholesterol (7KC) is the major nonenzymically formed oxysterol in atherosclerotic lesions. The precise mechanism underlying VSMC apoptosis is still poorly understood. In this study, we investigated whether 7KC causes apoptosis, and characterized its apoptotic mechanisms in primary cultured rat aortic VSMC. Cell viability was assessed by MTT assay and trypan blue assay. Apoptosis was assessed by flow cytometry, immunofluorescence, immunoprecipitation, and Western blot analyses. 7KC markedly decreased the VSMC viability in a time- and concentration-dependent manner, and increased the production of 4-hydroxynonenal (HNE), a major end-product of lipid peroxidation, which also decreased the VSMC viability. Pretreatment with 2,4-dinitrophenylhydrazine, a well-known reagent of lipid peroxidation-derived aldehydes, significantly restored the 7KC-decreased viability of VSMC. Furthermore, HNE, as well as 7KC, reduced the level of total Akt, a major mediator of cell survival. The 7KC-decreased level of total Akt was significantly restored by pretreatments with 2,4-dinitrophenylhydrazine and N-acetylcysteine. Lactacystin, a proteasome inhibitor, protected VSMC against apoptosis and Akt degradation, but did not inhibit HNE production. In the immunoprecipitation assay, 7KC increased HNE-modified Akt. From the results, it seems that, in atherosclerotic lesions, 7KC induces HNE production in VSMC, and this HNE binds to Akt, proceeding to proteasomal degradation of Akt, through which mechanism the atherosclerotic plaque instability may be facilitated.

Rosuvastatin Induces ROS-mediated Apoptosis in Human Prostate Cancer PC-3 Cells (Rosuvastatin이 유도하는 ROS가 전립선암 PC-3 세포주의 세포사멸 유도에 미치는 영향)

  • Choi, Hyeun Deok;Baik, Jong Jin;Kim, Sang Hun;Yu, Sun Nyoung;Chun, Sung Hak;Kim, Young Wook;Nam, Hyo Won;Kim, Kwang Youn;Ahn, Soon Cheol
    • Journal of Life Science
    • /
    • v.26 no.4
    • /
    • pp.398-405
    • /
    • 2016
  • Statins, the inhibitors of 3-hydroxy 3-methylglutaryl coenzyme A (HMG-CoA) reductase, are widely used in treatments of hypercholesterolemia and newly known as anti-cancer effect of various cancer cells. Recently, several studies suggested that reactive oxygen species (ROS) play a critical role on cell death signaling. However, mechanism of ROS by rosuvastatin is currently unclear. This study aimed to explore the molecular mechanism of apoptosis by rosuvastatin in human prostate cancer PC-3 cells. Cell viability and apoptosis-related protein expression were measured by MTT assay and western blotting, respectively. In addition, the levels of apoptosis and ROS were analyzed. The results showed that rosuvastatin dramatically reduced cell viability in a dose- and time-dependent manner. We confirmed that rosuvastatin induced apoptosis through reduction of procaspase-3 and cleavage of poly (ADP-ribose) polymerase (PARP) in PC-3 cells. In addition, rosuvastatin stimulated ROS production in a dose-dependent manner and pre-treatment with N-acetylcysteine (NAC), a ROS scavenger, significantly recovered rosuvastatin-induced ROS and apoptosis. Thus, we concluded that rosuvastain induces apoptosis through generation of ROS in human prostate cancer PC-3 cells and provides a promising approach to improve the efficacy of cancer therapy.

Ginsenoside compound-Mc1 attenuates oxidative stress and apoptosis in cardiomyocytes through an AMP-activated protein kinase-dependent mechanism

  • Hong, So-hyeon;Hwang, Hwan-Jin;Kim, Joo Won;Kim, Jung A.;Lee, You Bin;Roh, Eun;Choi, Kyung Mook;Baik, Sei Hyun;Yoo, Hye Jin
    • Journal of Ginseng Research
    • /
    • v.44 no.4
    • /
    • pp.664-671
    • /
    • 2020
  • Background: Ginsenoside compound-Mc1 (Mc1) is a member of the deglycosylated ginsenosides obtained from ginseng extract. Although several ginsenosides have a cardioprotective effect, this has not been demonstrated in ginsenoside Mc1. Methods: We treated H9c2 cells with hydrogen peroxide (H2O2) and ginsenoside Mc1 to evaluate the antioxidant effects of Mc1. The levels of antioxidant molecules, catalase, and superoxide dismutase 2 (SOD2) were measured, and cell viability was determined using the Bcl2-associated X protein (Bax):B-cell lymphoma-extra large ratio, a cytotoxicity assay, and flow cytometry. We generated mice with high-fat diet (HFD)-induced obesity using ginsenoside Mc1 and assessed their heart tissues to evaluate the antioxidant effect and the fibrosis-reducing capability of ginsenoside Mc1. Results: Ginsenoside Mc1 significantly increased the level of phosphorylated AMP-activated protein kinase (AMPK) in the H9c2 cells. The expression levels of catalase and SOD2 increased significantly after treatment with ginsenoside Mc1, resulting in a decrease in the production of H2O2-mediated reactive oxygen species. Treatment with ginsenoside Mc1 also significantly reduced the H2O2-mediated elevation of the Bax:Bcl2 ratio and the number of DNA-damaged cells, which was significantly attenuated by treatment with an AMPK inhibitor. Consistent with the in vitro data, ginsenoside Mc1 upregulated the levels of catalase and SOD2 and decreased the Bax:B-cell lymphoma-extra large ratio and caspase-3 activity in the heart tissues of HFD-induced obese mice, resulting in reduced collagen deposition. Conclusion: Ginsenoside Mc1 decreases oxidative stress and increases cell viability in H9c2 cells and the heart tissue isolated from HFD-fed mice via an AMPK-dependent mechanism, suggesting its potential as a novel therapeutic agent for oxidative stress-related cardiac diseases.

Growth Inhibition and Apoptosis Induction of Sulindac on Human Lung Cancer Cells (비소세포 폐암 세포주에서 Sulindac의 성장억제와 세포고사 유도)

  • Kim, Hak Ryul;Yang, Sei Hoon;Jeong, Eun Taik
    • Tuberculosis and Respiratory Diseases
    • /
    • v.56 no.5
    • /
    • pp.514-522
    • /
    • 2004
  • Background : Non-steroidal anti-inflammatory drugs (NSAID) are useful in chemoprevention of colorectal cancers. Continuous NSAID administation causes 40% to 50% reduction in relative risk for colorectal cancer. Sulindac possesses an antiproliferative effect and induces apoptosis and tumor regression on colon cancer and other types of cancers. We intended to analyze the effects of sulindac in three non-small cell lung cancer cell lines. Materials and Methods : The human lung cancer cell lines, A549, NCI-H157 and NCI-H460 were used for this study. Viability was tested by MTT assay, and cell death rate was measured by lactate dehydrogenase(LDH) release. Apoptosis was estimated by flow cytometric analysis and nuclear staining. Results: Sulindac was able to decrease the viability of non-small cell lung cancer cells in a dose- and time- dependent manner. In a parallel effect of sulindac on cell death rate, LDH release was increased in sulindac-treated lung cancer cells. Sulindac significantly increased apoptosis characterized by an increase of $sub-G_0/G_1$ fraction and morphological change of nuclei. The rate of apoptotic cells after sulindac treatment in lung cancer cells increased in a time- and dose- dependent manner in flow cytometric analysis. Apoptotic cells were defined as nuclear shrinkage, chromatin condensation and nuclear fragmentation of cells. Conclusion : Sulindac decreases viability and induces the apoptosis of lung cancer cells. Further studies will be needed to elucidate the potential mechanism of sulindac-induced apoptosis in lung cancer cells.

Effects of remifentanil preconditioning on factors related to uterine contraction in WISH cells

  • Kim, Cheul-Hong;Lee, Sang-Hoon;Kim, Eun-Jung;Ahn, Ji-Hye;Choi, Eun-Ji;Yoon, Ji-Uk;Choi, In-Seok
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.19 no.6
    • /
    • pp.343-351
    • /
    • 2019
  • Background: Preterm labor and miscarriage may occur in stressful situations, such as a surgical operation or infection during pregnancy. Pharyngeal and buccal abscess and facial bone fractures are inevitable dental surgeries in pregnant patients. Remifentanil is an opioid analgesic that is commonly used for general anesthesia and sedation. Nonetheless, no study has investigated the effects of remifentanil on amniotic epithelial cells. This study evaluated the effects of remifentanil on the factors related to uterine contraction and its mechanism of action on amniotic epithelial cells. Methods: Amniotic epithelial cells were preconditioned at various concentrations of remifentanil for 1 h, followed by 24-h lipopolysaccharide (LPS) exposure. MTT assays were performed to assess the cell viability in each group. The effects of remifentanil on factors related to uterine contractions in amniotic epithelial cells were assessed using a nitric oxide (NO) assay, western blot examinations of the expression of nuclear factor-kappa B (NF-κB), cyclooxygenase 2 (COX2), and prostaglandin E2 (PGE2), and RT-PCR examinations of the expression of the proinflammatory cytokines interleukin (IL)-1β and tumor necrosis factor-alpha (TNF-α). Results: Remifentanil did not affect viability and nitric oxide production of amniotic epithelial cells. Western blot analysis revealed that remifentanil preconditioning resulted in decreased expressions of NF-κB and PGE2 in the cells in LPS-induced inflammation, and a tendency of decreased COX2 expression. The results were statistically significant only at high concentration. RT-PCR revealed reduced expressions of IL-1β and TNF-α. Conclusions: Preconditioning with remifentanil does not affect the viability of amniotic epithelial cells but reduces the expression of factors related to uterine contractions in situations where cell inflammation is induced by LPS, which is an important inducer of preterm labor. These findings provide evidence that remifentanil may inhibit preterm labor in clinical settings.

Vasorelaxing Activity of Ulmus davidiana Ethanol Extracts in Rats: Activation of Endothelial Nitric Oxide Synthase

  • Cho, Eun-Jung;Park, Myoung-Soo;Kim, Sahng-Seop;Kang, Gun;Choi, Sung-A;Lee, Yoo-Rhan;Chang, Seok-Jong;Lee, Kwon-Ho;Lee, Sang-Do;Park, Jin-Bong;Jeon, Byeong-Hwa
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.6
    • /
    • pp.339-344
    • /
    • 2011
  • Ulmus davidiana var. japonica Rehder (Urticales: Ulmaceae) (UD) is a tree widespread in northeast Asia. It is traditionally used for anticancer and anti-inflammatory therapy. The present study investigated the effect of an ethanol extract of UD on vascular tension and its underlying mechanism in rats. The dried root bark of UD was ground and extracted with 80% ethanol. The prepared UD extract was used in further analysis. The effect of UD on the cell viability, vasoreactivity and hemodynamics were investigated using propidium iodide staining in cultured cells, isometric tension recording and blood pressure analysis, respectively. Low dose of UD ($10{\sim}100{\mu}g/ml)$ did not affect endothelial cell viability, but high dose of UD reduced cell viability. UD induced vasorelaxation in the range of $0.1{\sim}10{\mu}g/ml$ with an $ED_{50}$ value of $2{\mu}g/ml$. UD-induced vasorelaxation was completely abolished by removal of the endothelium or by pre-treatment with L-NAME, an inhibitor of nitric oxide synthase. UD inhibited calcium influx induced by phenylephrine and high $K^+$ and also completely abolished the effect of L-NAME. Intravenous injection of UD extracts (10~100 mg/kg) decreased arterial and ventricular pressure in a dose-dependent manner. Moreover, UD extracts reduced the ventricular contractility (+dP/dt) in anesthetized rats. However, UD-induced hypotensive actions were minimized in L-NAME-treated rats. Taken together, out results showed that UD induced vasorelaxation and has antihypertensive properties, which may be due the activation of nitric oxide synthase in endothelium.

ANTIBACTERIAL EFFECT OF POLYPHOSPHATES ON MUTANS STREPTOCOCCI (Mutans streptococci에 대한 polyphosphate의 항균효과)

  • Kang, Kye-Sook;Choi, Yeong-Chul
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.30 no.1
    • /
    • pp.80-91
    • /
    • 2003
  • Mutans streptococci, especially S. mutans and S. sobrinus strongly implicated in pathogenesis of dental caries, the major cause of tooth loss in children. Use of an antibacterial agent controlling dental caries has been rationalized. The present study was performed to observe the antibacterial effect of inorganic polyphosphates (polyP) on S. mutans and S. sobrinus. S. mutans GS5 and S. sobrinus 6715 were grown in brain-heart infusion broth with or without polyP. Minimal inhibitory concentration (MIC) of polyP for S. mutans GS5 was determined to be 0.08% and that for S. sobrius 6715 was 0.17%. PolyP 15 added to the growing culture of S. mutans GS5 and S. sobrinus 6715 at their exponential phase was as effective in inhibiting the growth of S. mutans GS5 and S. sobrinus 6715 as polyP added at the very beginning of the culture. More than 85% of the cells lost their viability determined by viable cell count when polyP 15 was added to the culture of growing S. mutans GS5 at MIC, suggesting that polyP 15 has bacterial effect on the bacterium. And more than 99.9% of the cells lost their viability determined by viable cell count when polyP 15 was added to the culture of growing S. sobrinus 6715 at MIC, suggesting that polyP 15 has bacterial effect on the bacterium. Intracellular nucleotide release from S. mutans CS5 and S. sobrinus 6715 was increased in the presence of polyP 15 for 5h but was not really reversed by the addition of divalent cations like $Ca^{++}\;and\;Mg^{++}$. The majority of the cells appeared to be atypical in their shape, demonstrating accumulation of highly electron-dense granules and ghost cells. The overall results suggest that polyP have a strong bactericidal activity against S. mutans and S. sobrinus in which lysis in relation to chelation may not play the major role but unknown mechanism that possibly affects the viability of the bacterium may be involved. PolyP may be used as an agent for prevention of dental caries.

  • PDF

Effects of Curcuma longa L.on Human Stomach Cancer Cells (울금(鬱金)이 위암세포(胃癌細胞)에 미치는 영향(影響))

  • Cho, Yu-Kyung;Yoon, Song-Ryub;Kim, Beong-Woo;Kim, Jin-Sung;Ryu, Ki-Won;Ryu, Bong-Ha
    • THE JOURNAL OF KOREAN ORIENTAL ONCOLOGY
    • /
    • v.9 no.1
    • /
    • pp.15-37
    • /
    • 2003
  • Objective: We are aimed to identify anti-tumor effects of Curcuma longa L. on the stomach cancer cells through molecular biologic methods. Material & Methods: We used AGS as human stomach cancer cells obtained from American Type Culture Collection. The boiled extract of Curcuma longa L. $5{\mu}l$ (Sample I), $10{\mu}l$ (Sample II) was treated to cultural media(ml) for 0, 6, 12, 24, 48 hours. We measured the killing effect on stomach cancer cells through Trypan blue exclusion test and the suppressive effect on viability of stomach cancer cells via MTT assay. For identification of its anticancer mechanism, the revelation of Bcl-2, Bcl-XL, and Bax which are genes related to apoptosis using the quantitative RT-PCR, change of mitochondria membrane permeability and membrane potential via flow cytometry, the cycle of cell mitosis, caspase cleavage and annexin V staining were examined. Results: 1. showed significant killing effect on stomach cancer cell than the control group with a time(6 hours later) and density dependent manner, which was statistical significance. 2. Extract of Curcuma longa L. showed suppressive effect on viability of stomach cancer cells that each test groups had more suppressive effects on viability of stomach cancer cells than the control group with a time(6 hours later), which was statistical significance.(p<0.05) 3. In the test about the revelation of genes related to apoptosis, the revelation of Bcl-2 and Bcl-XL decreased with a density manner which was statistical significance. but the revelation of Bax was not changed with statistical significance. 4. Extract of Curcuma longa L. caused apoptosis by decreasing the absorbance of mitochondria with statistical significance, and also induced apoptosis by decreasing the membrane potential of mitochondria. 5. Extract of Curcuma longa L. destructed the cell cycle of cell mitosos. 6. Cell apoptosis was induced by extract of Curcuma longa L. certificated by method of caspase cleavage and annexin V staining. Conclusion: This experiment showed that Curcuma longa L. has anti-tumor effect with statistical significance. This is in vitro experiment and basic experiment on Curcuma longa L.. We hope more progressive research on Curcuma longa L. will go on and its anti-tumor effects will be more practically identified.

  • PDF

Protective Effects of Bojungmyunyuk-dan in Cisplatin Treated Brain Cell Death (Cisplatin에 의한 뇌세포사멸에서 보중면역단의 방어효과)

  • Yoo Kyung Tae;Moon Seok Jae;Won Jin Hee;Kim Dong Woung;Lee Jong Deok;Won Kyoung Sook;Moon Goo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.2
    • /
    • pp.394-402
    • /
    • 2003
  • This study was designed to investigate the protective effect of Bojungmyunyuk-dan(BJMY-Dan) on the cisplatin-induced cytotoxicity of primary rat astrocytes. BJMY-Dan is an oriental herbal prescription for its ability to recover protective effects against anti-cancer chemotherapies. After astrocytes were treated cisplatin, MTT assay was performed for cell viability test. To explore the mechanism of cytotoxicity, I used the several measures of apoptosis to determine whether this processes was involved in cisplatin-induced cell damage in astrocytes. Also, astrocytes were treated with BJMY-Dan and then, followed by the addition of cisplatin. Cisplatin decreased the viability of astrocytes in a dose and time-dependent manner. BJMY-Dan increased the viability of astrocytes treated cisplatin. Astrocytes treated cisplatin were revealed as apoptosis characterized by nuclear staining and flow cytometry. BJMY-Dan protected astrocytes from cisplatin-induced nuclear fragmentation and chromatin condensation. Also, caspase-3 and caspase-9 proteases were activated in astrocytes by cisplatin. BJMY-Dan inhibited the activation of caspase proteases in cisplatin-treated astrocytes. Cleavage of [poly(ADP-ribose) polymerase](PARP) was occurred at 12hr after treatment of cisplatin in astrocytes. BJMY-Dan recovered the cleavage of PARP in cisplatin-treated astrocytes. Also, BJMY-Dan inhibited the activation of pro-apoptotic factor, Bak by cisplatin. Lastly, astrocytes stained with JC-1 and Rhodamine 123 were photographed by fluorescence microscope to visualize changes of mitochondrial membrane permeability transition(MPT) during treatment with cisplatin for 24hr. BJMY-Dan recovered the change of MPT by cisplatin in astrocytes. According to above results, BJMY-Dan may protect astrocytes from cytotoxicity induced by chemotherapeutic agents, including cisplatin.