• Title/Summary/Keyword: Via points

Search Result 550, Processing Time 0.026 seconds

Effect of Web-supported Health Education on Knowledge of Health and Healthy-living Behaviour of Female Staff in a Turkish University

  • Nurgul, Keser;Nursan, Cinar;Dilek, Kose;Over, Ozcelik Tijen;Sevin, Altinkaynak
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.2
    • /
    • pp.489-494
    • /
    • 2015
  • Background: Once limited with face-to face courses, health education has now moved into the web environment after new developments in information technology This study was carried out in order to give training to the university academic and administrative female staff who have difficulty in attending health education planned for specific times and places. The web-supported training focuses on healthy diet, the importance of physical activity, damage of smoking and stress management. Materials and Methods: The study was carried out in Sakarya University between the years 2012-2013 as a descriptive and quasi experimental study. The sample consisted of 30 participants who agreed to take part in the survey, filled in the forms and completed the whole training. The data were collected via a "Personel Information Form", "Health Promotion Life-Style Profile (HPLSP)", and "Multiple Choice Questionnaire (MCQ). Results: There was a statistically significant difference between the total points from "Health Promotion Life-Style Profile" and the total points from the sub-scale after and before the training (t=3.63, p=0.001). When the points from the multiple choice questionnaire after and before training were compared, it was seen that the average points were higher after the training (t=8.57, p<0.001). Conclusions: It was found that web-supported health training has a positive effect on the healthy living behaviour of female staff working at a Turkish university and on their knowledge of health promotion.

E-mail Survey for Developing Clinical Trial Protocol on Individualized Acupuncture Treatment for Knee Osteoarthritis (무릎 관절염의 맞춤형 침구 임상시험 프로토콜 개발을 위한 전자우편 설문 조사)

  • Lee, Seung-Deok;Kim, Sun-Woong;Choi, Sun-Mi;Seo, Jung-Chul;Lee, Sang-Hoon;Kim, Yong-Suk
    • Journal of Acupuncture Research
    • /
    • v.22 no.4
    • /
    • pp.197-204
    • /
    • 2005
  • Objectives : This survey was accomplished to find out how Korean medical doctors take acupuncture prescriptions for knee osteoarthritis in real clinical practice. Methods : The survey questions were developed by the consensus from 4 professors and 10 residents who major in acupuncture & moxibustion for developing clinical trial protocol on individualized acupuncture treatment for knee osteoarthritis. The questionnaires were distributed via e-mail to 3,306 members of Korea Oriental Medical Association from March 15th to March 23rd in 2005.84 members completed answers, and the computerized data were analyzed by ISP statistical program. Results : 1. 68 out of 84 Korean medical doctors used pattern diagnosis. 2. 61 out of 84 Korean medical doctors used both local and remote points, 20 doctors remote points only, and 3 doctors local acupuncture points only. 3. In case of doctors who use remote acupuncture points only, the acupuncture prescription principle was Saam or five element acupuncture (66%), along the meridian pathway (14%), Eight constitutional acupuncture (11%), Taegeuk acupuncture (2%), and miscellaneous (18%). Conclusion : In our e-mail survey, Korean medical doctors who experienced more than 10 year practice answered that they use five element acupuncture or Saam acupuncture according to meridian pathway theory as the most common principle of their acupuncture treatment prescription.

  • PDF

Extraction of Optimal Interest Points for Shape-based Image Classification (모양 기반 이미지 분류를 위한 최적의 우세점 추출)

  • 조성택;엄기현
    • Journal of KIISE:Databases
    • /
    • v.30 no.4
    • /
    • pp.362-371
    • /
    • 2003
  • In this paper, we propose an optimal interest point extraction method to support shape-base image classification and indexing for image database by applying a dynamic threshold that reflects the characteristics of the shape contour. The threshold is determined dynamically by comparing the contour length ratio of the original shape and the approximated polygon while the algorithm is running. Because our algorithm considers the characteristics of the shape contour, it can minimize the number of interest points. For n points of the contour, the proposed algorithm has O(nlogn) computational cost on an average to extract the number of m optimal interest points. Experiments were performed on the 70 synthetic shapes of 7 different contour types and 1100 fish shapes. It shows the average optimization ratio up to 0.92 and has 14% improvement, compared to the fixed threshold method. The shape features extracted from our proposed method can be used for shape-based image classification, indexing, and similarity search via normalization.

Fault Pattern Extraction Via Adjustable Time Segmentation Considering Inflection Points of Sensor Signals for Aircraft Engine Monitoring (센서 데이터 변곡점에 따른 Time Segmentation 기반 항공기 엔진의 고장 패턴 추출)

  • Baek, Sujeong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.3
    • /
    • pp.86-97
    • /
    • 2021
  • As mechatronic systems have various, complex functions and require high performance, automatic fault detection is necessary for secure operation in manufacturing processes. For conducting automatic and real-time fault detection in modern mechatronic systems, multiple sensor signals are collected by internet of things technologies. Since traditional statistical control charts or machine learning approaches show significant results with unified and solid density models under normal operating states but they have limitations with scattered signal models under normal states, many pattern extraction and matching approaches have been paid attention. Signal discretization-based pattern extraction methods are one of popular signal analyses, which reduce the size of the given datasets as much as possible as well as highlight significant and inherent signal behaviors. Since general pattern extraction methods are usually conducted with a fixed size of time segmentation, they can easily cut off significant behaviors, and consequently the performance of the extracted fault patterns will be reduced. In this regard, adjustable time segmentation is proposed to extract much meaningful fault patterns in multiple sensor signals. By considering inflection points of signals, we determine the optimal cut-points of time segments in each sensor signal. In addition, to clarify the inflection points, we apply Savitzky-golay filter to the original datasets. To validate and verify the performance of the proposed segmentation, the dataset collected from an aircraft engine (provided by NASA prognostics center) is used to fault pattern extraction. As a result, the proposed adjustable time segmentation shows better performance in fault pattern extraction.

Hierarchical Search-based Fast Schemes for Consecutive Block Error Concealment (연속된 블록 오류 은닉을 위한 계층 탐색 기반의 고속 알고리즘)

  • Jeon Soo-Yeol;Sohn Chae-Bong;Oh Seoung-Jun;Ahn Chang-Beom
    • Journal of Broadcast Engineering
    • /
    • v.9 no.4 s.25
    • /
    • pp.446-454
    • /
    • 2004
  • With the growth of multimedia systems, compressing image data has become more important in the area of multimedia services. Since a compressed image bitstream can often be seriously distorted by various types of channel noise, an error concealment algorithm becomes a very important issue. In order to solve this problem, Hsia proposed the error concealment algorithm where he recovered lost block data using 1D boundary matching vectors. His algorithm, however, requires high computational complexity since each matching vector needs MAD (Mean Absolute Difference) values of all pixels, which is either a boundary line top or a boundary line bottom of a damaged block. We propose a hierarchical search-based fast error concealment scheme as well as its approximated version to reduce computational time. In the proposed scheme, a hierarchical search is applied to reduce the number of checking points for searching a vector. The error concealment schemes proposed in this paper can be about 3 times faster than Hsia's with keeping visual quality and PSNR.

Segmentation and 3D Visualization of Medical Image : An Overview

  • Kang, Jiwoo;Kim, Doyoung;Lee, Sanghoon
    • Journal of International Society for Simulation Surgery
    • /
    • v.1 no.1
    • /
    • pp.27-31
    • /
    • 2014
  • In this paper, an overview of segmentation and 3D visualization methods are presented. Commonly, the two kinds of methods are used to visualize organs and vessels into 3D from medical images such as CT(A) and MRI - Direct Volume Rendering (DVR) and Iso-surface Rendering (IR). DVR can be applied directly to a volume. It directly penetrates through the volume while it determines which voxels are visualizedbased on a transfer function. On the other hand, IR requires a series of processes such as segmentation, polygonization and visualization. To extract a region of interest (ROI) from the medical volume image via the segmentation, some regions of an object and a background are required, which are typically obtained from the user. To visualize the extracted regions, the boundary points of the regions should be polygonized. In other words, the boundary surface composed of polygons such as a triangle and a rectangle should be required to visualize the regions into 3D because illumination effects, which makes the object shaded and seen in 3D, cannot be applied directly to the points.

Material distribution optimization of 2D heterogeneous cylinder under thermo-mechanical loading

  • Asgari, Masoud
    • Structural Engineering and Mechanics
    • /
    • v.53 no.4
    • /
    • pp.703-723
    • /
    • 2015
  • In this paper optimization of volume fraction distribution in a thick hollow cylinder with finite length made of two-dimensional functionally graded material (2D-FGM) and subjected to steady state thermal and mechanical loadings is considered. The finite element method with graded material properties within each element (graded finite elements) is used to model the structure. Volume fractions of constituent materials on a finite number of design points are taken as design variables and the volume fractions at any arbitrary point in the cylinder are obtained via cubic spline interpolation functions. The objective function selected as having the normalized effective stress equal to one at all points that leads to a uniform stress distribution in the structure. Genetic Algorithm jointed with interior penalty-function method for implementing constraints is effectively employed to find the global solution of the optimization problem. Obtained results indicates that by using the uniform distribution of normalized effective stress as objective function, considerably more efficient usage of materials can be achieved compared with the power law volume fraction distribution. Also considering uniform distribution of safety factor as design criteria instead of minimizing peak effective stress affects remarkably the optimum volume fractions.

Equilibrium Point and Stability of Double-Free-Nodes Space Truss Under Symmetric Condition (대칭 조건을 갖는 2-자유절점 공간 트러스의 평형점과 안정성)

  • Ha, Junhong;Shon, Sudeok;Lee, Seungjae;Hwang, Kyung-Ju
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.4
    • /
    • pp.69-76
    • /
    • 2019
  • A stadium roof that uses the pin-jointed spatial truss system has to be designed by taking into account the unstable phenomenon due to the geometrical non-linearity of the long span. This phenomenon is mainly studied in the single-free-node model (SFN) or double-free-node model (DFN). Unlike the simple SFN model, the more complex DFN model has a higher order of characteristic equations, making analysis of the system's stability complicated. However, various symmetric conditions can allow limited analysis of these problems. Thus, this research looks at the stability of the DFN model which is assumed to be symmetric in shape, and its load and equilibrium state. Its governing system is expressed by nonlinear differential equations to show the double Duffing effect. To investigate the dynamic behavior and characteristics, we normalize the system of the model in terms of space and time. The equilibrium points of the system unloaded or symmetrically loaded are calculated exactly. Furthermore, the stability of these points via the roots of the characteristic equation of a Jacobian matrix are classified.

Experimental Optimal Choice Of Initial Candidate Inliers Of The Feature Pairs With Well-Ordering Property For The Sample Consensus Method In The Stitching Of Drone-based Aerial Images

  • Shin, Byeong-Chun;Seo, Jeong-Kweon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.4
    • /
    • pp.1648-1672
    • /
    • 2020
  • There are several types of image registration in the sense of stitching separated images that overlap each other. One of these is feature-based registration by a common feature descriptor. In this study, we generate a mosaic of images using feature-based registration for drone aerial images. As a feature descriptor, we apply the scale-invariant feature transform descriptor. In order to investigate the authenticity of the feature points and to have the mapping function, we employ the sample consensus method; we consider the sensed image's inherent characteristic such as the geometric congruence between the feature points of the images to propose a novel hypothesis estimation of the mapping function of the stitching via some optimally chosen initial candidate inliers in the sample consensus method. Based on the experimental results, we show the efficiency of the proposed method compared with benchmark methodologies of random sampling consensus method (RANSAC); the well-ordering property defined in the context and the extensive stitching examples have supported the utility. Moreover, the sample consensus scheme proposed in this study is uncomplicated and robust, and some fatal miss stitching by RANSAC is remarkably reduced in the measure of the pixel difference.

Genetic Variability of Show Jumping Attributes in Young Horses Commencing Competing

  • Prochniak, Tomasz;Rozempolska-Rucinska, Iwona;Zieba, Grzegorz;Lukaszewicz, Marek
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.8
    • /
    • pp.1090-1094
    • /
    • 2015
  • The aim of the study was to select traits that may constitute a prospective criterion for breeding value prediction of young horses. The results of 1,232 starts of 894 four-, five-, six-, and seven-year-old horses, obtained during jumping championships for young horses which had not been evaluated in, alternative to championships, training centres were analyed. Nine traits were chosen of those recorded: ranking in the championship, elimination (y/n), conformation, rating of style on day one, two, and three, and penalty points on day one, two, and three of a championship. (Co)variance components were estimated via the Gibbs sampling procedure and adequate (co)variance component ratios were calculated. Statistical classifications were trait dependent but all fitted random additive genetic and permanent environment effects. It was found that such characteristics as penalty points and jumping style are potential indicators of jumping ability, and the genetic variability of the traits was within the range of 14% to 27%. Given the low genetic correlations between the conformation and other results achieved on the parkour, the relevance of assessment of conformation in four-years-old horses has been questioned.