• Title/Summary/Keyword: Vessel-wall magnetic resonance imaging

Search Result 13, Processing Time 0.028 seconds

Advances in Fast Vessel-Wall Magnetic Resonance Imaging Using High-Density Coil Arrays

  • Yin, Xuetong;Li, Nan;Jia, Sen;Zhang, Xiaoliang;Li, Ye
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.4
    • /
    • pp.229-251
    • /
    • 2021
  • Arteriosclerosis is the leading cause of stroke, with a fatality rate surpassing that of ischemic heart disease. High-resolution vessel wall magnetic resonance imaging is generally recognized as a non-invasive and panoramic method for the evaluation of arterial plaque; however, this method requires improved signal-to-noise ratio and scanning speed. Recent advances in high-density head and neck coil arrays are characterized by broad coverage, multiple channels, and closefitting designs. This review analyzes fast magnetic resonance imaging from the perspective of accelerated algorithms for vessel wall imaging and demonstrates the need for effective algorithms for signal acquisition using advanced radiofrequency system. We summarize different phased-array structures under various experimental objectives and equipment conditions, introduce current research results, and propose prospective research studies in the future.

Targeting the culprit: vessel wall magnetic resonance imaging for evaluating stroke

  • Kim, Seung Min;Ha, Sang Hee;Kwon, Hanim;Kim, Yeon Jung;Ahn, Sung Ho;Kim, Bum Joon
    • Annals of Clinical Neurophysiology
    • /
    • v.23 no.1
    • /
    • pp.17-28
    • /
    • 2021
  • The pathogenesis of many strokes originates in the vessel wall. Despite this, most traditional imaging focuses on the vascular lumen. Vessel-wall magnetic resonance imaging (VWMRI) is useful for establishing the etiology of intracranial stenosis. It also provides information regarding atherosclerotic plaque composition and thus plaque vulnerability, which is an indication of its potential to cause a stroke. In this review we focus on the characteristics of VWMRI findings in various arteriopathies related to intracranial artery stenosis, and discuss the clinical implications of these findings.

High-Resolution Magnetic Resonance Imaging of Intracranial Vertebral Artery Dissecting Aneurysm for Planning of Endovascular Treatment

  • Chun, Dong Hyun;Kim, Sung Tae;Jeong, Young Gyun;Jeong, Hae Woong
    • Journal of Korean Neurosurgical Society
    • /
    • v.58 no.2
    • /
    • pp.155-158
    • /
    • 2015
  • The equipment and techniques associated with magnetic resonance imaging (MRI) have rapidly evolved. The development of 3.0 Tesla MRI has enabled high-resolution imaging of the intracranial vessel wall. High-resolution MRI (HRMRI) can yield excellent visualization of both the arterial wall and lumen, thus facilitating the detection of the primary and secondary features of intracranial arterial dissection. In the present report, we describe the manner in which HRMRI affected our endovascular treatment planning strategy in 2 cases with unruptured intracranial vertebral artery dissection aneurysm. HRMRI provides further information about the vessel wall and the lumen of the unruptured intracranial vertebral artery dissecting aneurysm, which was treated by an endovascular approach in the 2 current cases.

Arterial Wall Imaging in Angiographically Occult Spontaneous Subarachnoid Hemorrhage : New Insight into the Usual Suspect

  • Yoon, Wonki;Kim, Jang Hun;Roh, Haewon;Kwon, Taek-Hyun
    • Journal of Korean Neurosurgical Society
    • /
    • v.65 no.2
    • /
    • pp.245-254
    • /
    • 2022
  • Objective : The etiology of angiographically occult spontaneous subarachnoid hemorrhage (AOsSAH) is unclear. Three-dimensional (3D) high-resolution vessel wall magnetic resonance imaging (HVM) might be useful in detecting the hidden arterial wall angiopathy in patients with AOsSAH. We aimed to demonstrate the feasibility of HVM for detecting the arterial cause of AOsSAH. Methods : Patients, who were diagnosed with AOsSAH in the first evaluations and underwent HVM, were enrolled. Their clinical and radiologic data were retrospectively reviewed. Especially, focal enhancement of arterial wall on HVM and repetitive catheterized angiograms were precisely compared. Results : Among 251 patients with spontaneous SAH, 22 patients were diagnosed with AOsSAH in the first evaluations (8.76%). After excluding three patients who did not undergo 3D-HVM, 19 patients were enrolled and classified as convexal (n=2) or perimesencephalic (n=4), and diffuse (n=13) groups. In convexal and perimesencephalic groups, no focal enhancement on HVM and no positive findings on repetitive angiography were noted. In diffuse group, 10 patients showed focal enhancement of arterial wall on HVM (10/13, 76.9%). Repeated angiography with 3D reconstruction revealed four patients of angiographically positive causative arteriopathy and possible lesion in one case in the concordant location of intramural enhancement on 3D-HVM (5/10, 50%). Three of them were treated with endovascular stent insertion. All patients, except one, recovered with good clinical outcome (3-month modified Rankin score, 0 and 1). Conclusion : 3D-HVM was useful in detecting hidden true arteriopathy in AOsSAH. It may provide new insights into the etiologic investigation of AOsSAH by proving information about the arterial wall status.

High-Resolusion Magnetic Resonance Imaging of Carotid Atherosclerotic Plaque (경동맥 죽상경화반의 고해상도 자기공명영상)

  • Byun, Woo-Mok;Cho, Jae-Ho
    • Journal of Yeungnam Medical Science
    • /
    • v.21 no.2
    • /
    • pp.143-150
    • /
    • 2004
  • A thromboembolic stroke is believed to be precipitated by a rupture of vulnerable atheromatous plaques. Until recently the assessment of a further risk of stroke in high-risk patients in whom atherosclerosis has presented with a transient ischaemic attack (TIA), has been confined to a quantitative assessment of the luminal patency of the internal carotid artery. These traditional stratification parameters are no longer believed to be the most accurate predictors of a thrombo-embolism. This is because the process of vessel wall remodeling can maintain a luminal patency, and consequently, quite large friable plaques may remain unidentified. Accordingly, there is a need for an improved risk assessment. The fibrous cap of a vulnerable plaque is thinner, and an intraplaque hemorrhage and inflammation can occur during the development of atherosclerotic plaque. Several imaging methods for identifying vulnerable plaques have been developed. Recently, high resolution magnetic resonance (MR) imaging has emerged as an accurate non-invasive tool that can characterize the carotid plaque components in vivo. A High resolution carotid magnetic resonance is capable of distinguishing an intact, thick fibrous cap from a thin and ruptured cap in carotid plaque. In addition, a plaque MR can identify the active inflammation and detect a hemorrhage. High resolution carotid MR imaging is a valuable noninvasive method for quantifying the plaque components and identifying vulnerable plaque.

  • PDF

Reversible Cerebral Vasoconstriction Syndrome Presenting as Transient Vessel Wall Enhancement on Contrast-Enhanced Fluid-Attenuated Inversion Recovery Images: A Case Report and Literature Review (조영증강 유체감쇠반전회복기법 영상에서 일과성 혈관 벽 조영증강으로 나타나는 가역성 대뇌 혈관 수축 증후군: 증례 보고 및 문헌 고찰)

  • Sun Ah Heo;Eun Soo Kim;Yul Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.81 no.5
    • /
    • pp.1239-1245
    • /
    • 2020
  • Reversible cerebral vasoconstriction syndrome (RCVS) is a clinical and radiological syndrome with primary features that include hyperacute onset of severe headache and segmental vasoconstriction of the cerebral arteries, which resolve within 3 months. Vessel wall enhancement has been reported in some cases of RCVS; however, its pathophysiological and diagnostic implications remain unclear. We review a case of RCVS in a patient with transient vessel wall enhancement on contrast-enhanced fluid-attenuated inversion recovery images, focusing on the pathophysiological and diagnostic implications.

High-Resolution Magnetic Resonance Imaging Findings of Reversible Cerebral Vasoconstriction Syndrome associated with Severe Anemia: A Case Report (중증 빈혈과 관련된 가역적 뇌혈관 수축 증후군의 고해상도 자기공명영상 소견: 증례 보고)

  • Yongsang Kim;Ra Gyoung Yoon;Ji Ye Lee;Jong-Moo Park
    • Journal of the Korean Society of Radiology
    • /
    • v.82 no.1
    • /
    • pp.261-266
    • /
    • 2021
  • Ischemic stroke is one of the manifestations of reversible cerebral vasoconstriction syndrome (RCVS). Many precipitants and associated disorders of RCVS have been suggested. However, few case reports have indicated an association between anemia and RCVS. Here, we report a case of a 66-year-old female with severe iron deficiency anemia (IDA), who presented with ischemic stroke and cerebral vasoconstriction, which gradually improved with conservative treatment. High-resolution vessel wall magnetic resonance imaging findings and reversibility suggested the possibility of RCVS. In patients with RCVS and ischemic stroke, IDA should be considered. Prompt management should be delivered to prevent disease progression and recurrence.

Increased Wall Enhancement Extent Representing Higher Rupture Risk of Unruptured Intracranial Aneurysms

  • Jiang, Yeqing;Xu, Feng;Huang, Lei;Lu, Gang;Ge, Liang;Wan, Hailin;Geng, Daoying;Zhang, Xiaolong
    • Journal of Korean Neurosurgical Society
    • /
    • v.64 no.2
    • /
    • pp.189-197
    • /
    • 2021
  • Objective : This study aims to investigate the relationship between aneurysm wall enhancement and clinical rupture risks based on the magnetic resonance vessel wall imaging (MR-VWI) quantitative methods. Methods : One hundred and eight patients with 127 unruptured aneurysms were prospectively enrolled from Feburary 2016 to October 2017. Aneurysms were divided into high risk (≥10) and intermediate-low risk group (<10) according to the PHASES (Population, Hypertension, Age, Size of aneurysm, Earlier SAH history from another aneurysm, Site of aneurysm) scores. Clinical risk factors, aneurysm morphology, and wall enhancement index (WEI) calculated using 3D MR-VWI were analyzed and compared. Results : In comparison of high-risk and intermediated-low risk groups, univariate analysis showed that neck width (4.5±3.3 mm vs. 3.4±1.7 mm, p=0.002), the presence of wall enhancement (100.0% vs. 62.9%, p<0.001), and WEI (1.6±0.6 vs. 0.8±0.8, p<0.001) were significantly associated with high rupture risk. Multivariate regression analysis revealed that WEI was the most important factor in predicting high rupture risk (odds ratio, 2.6; 95% confidence interval, 1.4-4.9; p=0.002). The receiver operating characteristic (ROC) curve analysis can efficiently differentiate higher risk aneurysms (area under the curve, 0.780; p<0.001) which have a reliable WEI cutoff value (1.04; sensitivity, 0.833; specificity, 0.67) predictive of high rupture risk. Conclusion : Aneurysms with higher rupture risk based on PHASES score demonstrate increased neck width, wall enhancement, and the enhancement intensity. Higher WEI in unruptured aneurysms has a predictive value for increased rupture risk.

Influence of Inlet Secondary Curvature on Hemodynamics in Subject-Specific Model of Carotid Bifurcations (환자 특정 경동맥 분기부 모델 혈류유동에 대한 입구부 이차곡률의 영향)

  • Lee, Sang-Wook
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.5
    • /
    • pp.479-486
    • /
    • 2011
  • In image-based CFD modeling of carotid bifurcation hemodynamics, it is often not possible (or at least not convenient) to impose measured velocity profiles at the common carotid artery inlet. Instead, fully-developed velocity profiles are usually imposed based on measured flow rates. However, some studies reported a pronounced influence of inflow boundary conditions that were based on actual velocity profiles measured by magnetic resonance imaging which showing the unusual presence of a high velocity band in the middle of the vessel during early diastole inconsistent with a Dean-type velocity profile. We demonstrated that those velocity profiles were induced by the presence of modest secondary curvature of the inlet and set about to test whether such more "realistic" velocity profiles might indeed have a more pronounced influence on the carotid bifurcation hemodynamics. We found that inlet boundary condition with axisymmetric fully-developed velocity profile(Womersley flow) is reasonable as long as sufficient CCA inlet length of realistic geometry is applied.

Carotid Vessel Wall MRI Findings in Acute Cerebral Infarction Caused by Polycythemia Vera: A Case Report (적혈구 증가증으로 인한 급성 뇌경색에서 경동맥 혈관벽 자기공명영상 소견: 증례 보고)

  • Jun Kyeong Park;Eun Ja Lee;Dong-Eog Kim;Hyun Jung Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.83 no.1
    • /
    • pp.178-183
    • /
    • 2022
  • Polycythemia vera (PV) is a rare myeloproliferative disease that causes elevated absolute red blood cell (RBC) mass due to uncontrolled RBC production. Moreover, this condition has been associated with a high risk of ischemic stroke and large vessel stenosis or occlusion, with many studies reporting cerebral infarction in PV patients. Despite these findings, there have been no reports on the vessel wall MRI (VW-MRI) findings of the narrowed vessels in PV-associated ischemic stroke patients. To the best of our knowledge, this is the first report in English regarding the carotid VW-MRI findings of a 30-year-old male diagnosed with PV after being hospitalized due to stroke.