DOI QR코드

DOI QR Code

Advances in Fast Vessel-Wall Magnetic Resonance Imaging Using High-Density Coil Arrays

  • Yin, Xuetong (Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences) ;
  • Li, Nan (Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences) ;
  • Jia, Sen (Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences) ;
  • Zhang, Xiaoliang (Department of Biomedical Engineering, State University of New York at Buffalo) ;
  • Li, Ye (Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences)
  • Received : 2021.09.28
  • Accepted : 2021.11.12
  • Published : 2021.12.30

Abstract

Arteriosclerosis is the leading cause of stroke, with a fatality rate surpassing that of ischemic heart disease. High-resolution vessel wall magnetic resonance imaging is generally recognized as a non-invasive and panoramic method for the evaluation of arterial plaque; however, this method requires improved signal-to-noise ratio and scanning speed. Recent advances in high-density head and neck coil arrays are characterized by broad coverage, multiple channels, and closefitting designs. This review analyzes fast magnetic resonance imaging from the perspective of accelerated algorithms for vessel wall imaging and demonstrates the need for effective algorithms for signal acquisition using advanced radiofrequency system. We summarize different phased-array structures under various experimental objectives and equipment conditions, introduce current research results, and propose prospective research studies in the future.

Keywords

Acknowledgement

This work was supported, in part, by grants awarded by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB25000000); the National Key R&D Program of China, (Grant No. 2021YFE0204400); a National Natural Science Foundation of China (NSFC) under Grant No. 81627901; and a city grant RCYX20200714114735123; Guangdong Province grant 2020B1212060051.

References

  1. World Health Organization. The top 10 causes of death. World Health Organization; 2020
  2. Zhou Z, Li R, Zhao X, et al. Evaluation of 3D multi-contrast joint intra- and extracranial vessel wall cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2015;17:41 https://doi.org/10.1186/s12968-015-0143-z
  3. Qureshi AI, Caplan LR. Intracranial atherosclerosis. Lancet 2014;383:984-998 https://doi.org/10.1016/S0140-6736(13)61088-0
  4. Li Y, Chen Q, Wei Z, et al. One-stop MR neurovascular vessel wall imaging with a 48-channel coil system at 3 T. IEEE Trans Biomed Eng 2020;67:2317-2327 https://doi.org/10.1109/tbme.2019.2959030
  5. Lin M, Xin L, Min C, Haibin S, Jianping L. Chinese guideline for standard utilization of imaging for cerebrovascular diseases. Chin J Radiol 2019;53:916-940
  6. Mandell DM, Mossa-Basha M, Qiao Y, et al. Intracranial vessel wall MRI: principles and expert consensus recommendations of the American Society of Neuroradiology. AJNR Am J Neuroradiol 2017;38:218-229 https://doi.org/10.3174/ajnr.A4893
  7. Xihai Z, Cheng L, Fuhua Y. Expert consensus on techniques and application of intracranial MR vessel wall imaging in China. Chin J Radiol 2019;53:1045-1059
  8. Saba L, Yuan C, Hatsukami TS, et al. Carotid artery wall imaging: perspective and guidelines from the asnr vessel wall imaging study group and expert consensus recommendations of the American Society of Neuroradiology. AJNR Am J Neuroradiol 2018;39:E9-E31 https://doi.org/10.3174/ajnr.A5488
  9. Zhao X, Hippe DS, Li R, et al. Prevalence and characteristics of carotid artery high-risk atherosclerotic plaques in Chinese patients with cerebrovascular symptoms: a Chinese atherosclerosis risk evaluation II study. J Am Heart Assoc 2017;6:e005831 https://doi.org/10.1161/JAHA.117.005831
  10. Hu X, Li Y, Zhang L, Zhang X, Liu X, Chung YC. A 32-channel coil system for MR vessel wall imaging of intracranial and extracranial arteries at 3T. Magn Reson Imaging 2017;36:86-92 https://doi.org/10.1016/j.mri.2016.10.018
  11. Hernandez D, Kim KN. A review on the RF coil designs and trends for ultra high field magnetic resonance imaging. Investig Magn Reson Imaging 2020;24:95-122 https://doi.org/10.13104/imri.2020.24.3.95
  12. Cohen-Adad J, Mareyam A, Keil B, Polimeni JR, Wald LL. 32-channel RF coil optimized for brain and cervical spinal cord at 3 T. Magn Reson Med 2011;66:1198-1208 https://doi.org/10.1002/mrm.22906
  13. Roemer PB, Edelstein WA, Hayes CE, Souza SP, Mueller OM. The NMR phased array. Magn Reson Med 1990;16:192-225 https://doi.org/10.1002/mrm.1910160203
  14. Li Y, Xie Z, Pang Y, Vigneron D, Zhang X. ICE decoupling technique for RF coil array designs. Med Phys 2011;38:4086-4093 https://doi.org/10.1118/1.3598112
  15. Feinberg DA, Hale JD, Watts JC, Kaufman L, Mark A. Halving MR imaging time by conjugation: demonstration at 3.5 kG. Radiology 1986;161:527-531 https://doi.org/10.1148/radiology.161.2.3763926
  16. Haacke EM, Lindskogj E, Lin W. A fast, iterative, partial-fourier technique capable of local phase recovery. J Magn Reson (1969) 1991;92:126-145 https://doi.org/10.1016/0022-2364(91)90253-P
  17. Noll DC, Nishimura DG, Macovski A. Homodyne detection in magnetic resonance imaging. IEEE Trans Med Imaging 1991;10:154-163 https://doi.org/10.1109/42.79473
  18. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999;42:952-962 https://doi.org/10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
  19. Sodickson DK, Manning WJ. Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 1997;38:591-603 https://doi.org/10.1002/mrm.1910380414
  20. Jakob PM, Griswold MA, Edelman RR, Sodickson DK. AUTO-SMASH: a self-calibrating technique for SMASH imaging. SiMultaneous Acquisition of Spatial Harmonics. MAGMA 1998;7:42-54 https://doi.org/10.1007/BF02592256
  21. Heidemann RM, Griswold MA, Haase A, Jakob PM. VD-AUTO-SMASH imaging. Magn Reson Med 2001;45:1066-1074 https://doi.org/10.1002/mrm.1141
  22. Griswold MA, Jakob PM, Heidemann RM, et al. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 2002;47:1202-1210 https://doi.org/10.1002/mrm.10171
  23. Donoho DL. Compressed sensing. IEEE Trans Information Theory 2006;52:1289-1306 https://doi.org/10.1109/TIT.2006.871582
  24. Lustig M, Donoho D, Pauly JM. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 2007;58:1182-1195 https://doi.org/10.1002/mrm.21391
  25. Liang D, Liu B, Wang J, Ying L. Accelerating SENSE using compressed sensing. Magn Reson Med 2009;62:1574-1584 https://doi.org/10.1002/mrm.22161
  26. Zhu B, Liu JZ, Cauley SF, Rosen BR, Rosen MS. Image reconstruction by domain-transform manifold learning. Nature 2018;555:487-492 https://doi.org/10.1038/nature25988
  27. Jin KH, McCann MT, Froustey E, Unser M. Deep convolutional neural network for inverse problems in imaging. IEEE Trans Image Process 2017;26:4509-4522 https://doi.org/10.1109/TIP.2017.2713099
  28. Breuer FA, Blaimer M, Mueller MF, et al. Controlled aliasing in volumetric parallel imaging (2D CAIPIRINHA). Magn Reson Med 2006;55:549-556 https://doi.org/10.1002/mrm.20787
  29. Qiao Y, Steinman DA, Qin Q, et al. Intracranial arterial wall imaging using three-dimensional high isotropic resolution black blood MRI at 3.0 Tesla. J Magn Reson Imaging 2011;34:22-30 https://doi.org/10.1002/jmri.22592
  30. Xie Y, Yang Q, Xie G, Pang J, Fan Z, Li D. Improved black-blood imaging using DANTE-SPACE for simultaneous carotid and intracranial vessel wall evaluation. Magn Reson Med 2016;75:2286-2294 https://doi.org/10.1002/mrm.25785
  31. Zhang L, Zhang N, Wu J, et al. High resolution three dimensional intracranial arterial wall imaging at 3 T using T1 weighted SPACE. Magn Reson Imaging 2015;33:1026-1034 https://doi.org/10.1016/j.mri.2015.06.006
  32. Wang H, Qiu Z, Su S, et al. Parameter optimization framework on wave gradients of Wave-CAIPI imaging. Magn Reson Med 2020;83:1659-1672 https://doi.org/10.1002/mrm.28034
  33. Qiu Z, Jia S, Su S, et al. Highly accelerated parallel MRI using wave encoding and virtual conjugate coils. Magn Reson Med 2021;86:1345-1359 https://doi.org/10.1002/mrm.28803
  34. Yuan J, Usman A, Reid SA, et al. Three-dimensional black-blood multi-contrast carotid imaging using compressed sensing: a repeatability study. MAGMA 2018;31:183-190 https://doi.org/10.1007/s10334-017-0640-1
  35. Zhu C, Tian B, Chen L, et al. Accelerated whole brain intracranial vessel wall imaging using black blood fast spin echo with compressed sensing (CS-SPACE). MAGMA 2018;31:457-467 https://doi.org/10.1007/s10334-017-0667-3
  36. Jia S, Zhang L, Ren L, et al. Joint intracranial and carotid vessel wall imaging in 5 minutes using compressed sensing accelerated DANTE-SPACE. Eur Radiol 2020;30:119-127 https://doi.org/10.1007/s00330-019-06366-7
  37. Liu Y, Zhan Z, Cai JF, Guo D, Chen Z, Qu X. Projected iterative soft-thresholding algorithm for tight frames in compressed sensing magnetic resonance imaging. IEEE Trans Med Imaging 2016;35:2130-2140 https://doi.org/10.1109/TMI.2016.2550080
  38. Ravishankar S, Bresler Y. MR image reconstruction from highly undersampled k-space data by dictionary learning. IEEE Trans Med Imaging 2011;30:1028-1041 https://doi.org/10.1109/TMI.2010.2090538
  39. Aharon M, Elad M, Bruckstein A. K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans Signal Process 2006;54:4311-4322 https://doi.org/10.1109/TSP.2006.881199
  40. Lai Z, Qu X, Liu Y, et al. Image reconstruction of compressed sensing MRI using graph-based redundant wavelet transform. Med Image Anal 2016;27:93-104 https://doi.org/10.1016/j.media.2015.05.012
  41. Zhan Z, Cai JF, Guo D, Liu Y, Chen Z, Qu X. Fast multiclass dictionaries learning with geometrical directions in MRI reconstruction. IEEE Trans Biomed Eng 2016;63:1850-1861 https://doi.org/10.1109/TBME.2015.2503756
  42. Cai JM, Hatsukami TS, Ferguson MS, Small R, Polissar NL, Yuan C. Classification of human carotid atherosclerotic lesions with in vivo multicontrast magnetic resonance imaging. Circulation 2002;106:1368-1373 https://doi.org/10.1161/01.CIR.0000028591.44554.F9
  43. Li F, McDermott MM, Li D, et al. The association of lesion eccentricity with plaque morphology and components in the superficial femoral artery: a high-spatial-resolution, multi-contrast weighted CMR study. J Cardiovasc Magn Reson 2010;12:37 https://doi.org/10.1186/1532-429X-12-37
  44. Lai Z, Qu X, Lu H, et al. Sparse MRI reconstruction using multi-contrast image guided graph representation. Magn Reson Imaging 2017;43:95-104 https://doi.org/10.1016/j.mri.2017.07.009
  45. Gong E, Huang F, Ying K, Wu W, Wang S, Yuan C. PROMISE: parallel-imaging and compressed-sensing reconstruction of multicontrast imaging using SharablE information. Magn Reson Med 2015;73:523-535 https://doi.org/10.1002/mrm.25142
  46. Koolstra K, van Gemert J, Bornert P, Webb A, Remis R. Accelerating compressed sensing in parallel imaging reconstructions using an efficient circulant preconditioner for cartesian trajectories. Magn Reson Med 2019;81:670-685 https://doi.org/10.1002/mrm.27371
  47. Jia S, Qiu Z, Zhang L, Liu X, Zheng H, Liang D. Highly accelerated vessel wall imaging using CAIPIRINHA accelerated SPACE and IFR-CS. In Proceedings of the 28th Annual Meeting of ISMRM, 2020:1325
  48. Kim TH, Setsompop K, Haldar JP. LORAKS makes better SENSE: phase-constrained partial fourier SENSE reconstruction without phase calibration. Magn Reson Med 2017;77:1021-1035 https://doi.org/10.1002/mrm.26182
  49. Haldar JP, Zhuo J. P-LORAKS: low-rank modeling of local k-space neighborhoods with parallel imaging data. Magn Reson Med 2016;75:1499-1514 https://doi.org/10.1002/mrm.25717
  50. Wang S, Su Z, Ying L, et al. Accelerating magnetic resonance imaging via deep learning. Proc IEEE Int Symp Biomed Imaging 2016;2016:514-517
  51. Yang G, Yu S, Dong H, et al. DAGAN: deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction. IEEE Trans Med Imaging 2018;37:1310-1321 https://doi.org/10.1109/tmi.2017.2785879
  52. Quan TM, Nguyen-Duc T, Jeong WK. Compressed sensing MRI reconstruction using a generative adversarial network with a cyclic loss. IEEE Trans Med Imaging 2018;37:1488-1497 https://doi.org/10.1109/TMI.2018.2820120
  53. Yang Y, Sun J, Li H, Xu Z. ADMM-CSNet: a deep learning approach for image compressive sensing. IEEE Trans Pattern Anal Mach Intell 2020;42:521-538 https://doi.org/10.1109/tpami.2018.2883941
  54. Kwon K, Kim D, Park H. A parallel MR imaging method using multilayer perceptron. Med Phys 2017;44:6209-6224 https://doi.org/10.1002/mp.12600
  55. Uecker M, Hohage T, Block KT, Frahm J. Image reconstruction by regularized nonlinear inversion--joint estimation of coil sensitivities and image content. Magn Reson Med 2008;60:674-682 https://doi.org/10.1002/mrm.21691
  56. Liang D, Cheng J, Ke Z, Ying L. Deep magnetic resonance image reconstruction: inverse problems meet neural networks. IEEE Signal Process Mag 2020;37:141-151 https://doi.org/10.1109/msp.2019.2950557
  57. Wang S, Xiao T, Liu Q, Zheng H. Deep learning for fast MR imaging: a review for learning reconstruction from incomplete k-space data. Biomed Signal Process Control 2021;68:102579 https://doi.org/10.1016/j.bspc.2021.102579
  58. Lee D, Yoo J, Ye JC. Deep residual learning for compressed sensing MRI. Proc IEEE Int Symp Biomed Imaging 2017:15-18
  59. Lindenholz A, van der Kolk AG, Zwanenburg JJM, Hendrikse J. The use and pitfalls of intracranial vessel wall imaging: how we do it. Radiology 2018;286:12-28 https://doi.org/10.1148/radiol.2017162096
  60. Cheng J, Jia S, Ying L, et al. Improved parallel image reconstruction using feature refinement. Magn Reson Med 2018;80:211-223 https://doi.org/10.1002/mrm.27024
  61. Chen Q, Xie G, Luo C, et al. A dedicated 36-channel receive array for fetal MRI at 3T. IEEE Trans Med Imaging 2018;37:2290-2297 https://doi.org/10.1109/tmi.2018.2839191
  62. Li N, Zheng H, Xu G, et al. Simultaneous head and spine MR imaging in children using a dedicated multichannel receiver system at 3T. IEEE Trans Biomed Eng 2021;68:3659-3670 https://doi.org/10.1109/TBME.2021.3082149
  63. Gruber B, Froeling M, Leiner T, Klomp DWJ. RF coils: a practical guide for nonphysicists. J Magn Reson Imaging 2018;48:590-604 https://doi.org/10.1002/jmri.26187
  64. Ritz K, Denswil NP, Stam OC, van Lieshout JJ, Daemen MJ. Cause and mechanisms of intracranial atherosclerosis. Circulation 2014;130:1407-1414 https://doi.org/10.1161/CIRCULATIONAHA.114.011147
  65. Wang Y, Zhao X, Liu L, et al. Prevalence and outcomes of symptomatic intracranial large artery stenoses and occlusions in China: the Chinese intracranial atherosclerosis (CICAS) study. Stroke 2014;45:663-669 https://doi.org/10.1161/STROKEAHA.113.003508
  66. Setsompop K, Gagoski BA, Polimeni JR, Witzel T, Wedeen VJ, Wald LL. Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty. Magn Reson Med 2012;67:1210-1224 https://doi.org/10.1002/mrm.23097
  67. Bookwalter CA, Griswold MA, Sunshine JL, Duerk JL. Analysis of signal-to-noise behavior in Cartesian continuous sampling sequences: predictions and experimental validation of opportunities for improved image SNR. Magn Reson Med 2007;58:819-824 https://doi.org/10.1002/mrm.21321
  68. Vasanawala SS, Lustig M. Advances in pediatric body MRI. Pediatr Radiol 2011;41 Suppl 2:549-554 https://doi.org/10.1007/s00247-011-2103-6
  69. Saib G, Gras V, Mauconduit F, et al. Time-of-flight angiography at 7T using TONE double spokes with parallel transmission. Magn Reson Imaging 2019;61:104-115 https://doi.org/10.1016/j.mri.2019.05.018
  70. Wiggins GC, Triantafyllou C, Potthast A, Reykowski A, Nittka M, Wald LL. 32-channel 3 Tesla receive-only phased-array head coil with soccer-ball element geometry. Magn Reson Med 2006;56:216-223 https://doi.org/10.1002/mrm.20925
  71. Wiggins GC, Polimeni JR, Potthast A, Schmitt M, Alagappan V, Wald LL. 96-channel receive-only head coil for 3 Tesla: design optimization and evaluation. Magn Reson Med 2009;62:754-762 https://doi.org/10.1002/mrm.22028
  72. Porter JR, Wright SM, Reykowski A. A 16-element phased-array head coil. Magn Reson Med 1998;40:272-279 https://doi.org/10.1002/mrm.1910400213
  73. Lattanzi R, Grant AK, Polimeni JR, et al. Performance evaluation of a 32-element head array with respect to the ultimate intrinsic SNR. NMR Biomed 2010;23:142-151 https://doi.org/10.1002/nbm.1435
  74. Reiss-Zimmermann M, Gutberlet M, Kostler H, Fritzsch D, Hoffmann KT. Improvement of SNR and acquisition acceleration using a 32-channel head coil compared to a 12-channel head coil at 3T. Acta Radiol 2013;54:702-708 https://doi.org/10.1177/0284185113479051
  75. Wiesinger F, Boesiger P, Pruessmann KP. Electrodynamics and ultimate SNR in parallel MR imaging. Magn Reson Med 2004;52:376-390 https://doi.org/10.1002/mrm.20183
  76. Wiesinger F, De Zanche N, Pruessmann KP. Approaching ultimate SNR with finite coil arrays. In Proceedings of the 13th Annual Meeting of ISMRM, 2005:672
  77. Vaidya MV, Sodickson DK, Lattanzi R. Approaching ultimate intrinsic SNR in a uniform spherical sample with finite arrays of loop coils. Concepts Magn Reson Part B Magn Reson Eng 2014;44:53-65 https://doi.org/10.1002/cmr.b.21268
  78. Keil B, Wald LL. Massively parallel MRI detector arrays. J Magn Reson 2013;229:75-89 https://doi.org/10.1016/j.jmr.2013.02.001
  79. Han H, Song AW, Truong TK. Integrated parallel reception, excitation, and shimming (iPRES). Magn Reson Med 2013;70:241-247 https://doi.org/10.1002/mrm.24766
  80. Keil B, Blau JN, Biber S, et al. A 64-channel 3T array coil for accelerated brain MRI. Magn Reson Med 2013;70:248-258 https://doi.org/10.1002/mrm.24427
  81. Mahmutovic M, Scholz A, Kutscha N, et al. A 64-channel brain array coil with an integrated 16-channel field monitoring system for 3T MRI. In Proceedings of the 29th Annual Meeting of ISMRM, 2021:0623
  82. Li Y, Lee J, Zhang L, et al. Design and testing of a 24-channel head coil for MR imaging at 3T. Magn Reson Imaging 2019;58:162-173 https://doi.org/10.1016/j.mri.2019.01.020
  83. Cogswell PM, Trzasko JD, Gray EM, et al. Application of adaptive image receive coil technology for whole-brain imaging. AJR Am J Roentgenol 2021;216:552-559 https://doi.org/10.2214/AJR.20.22812
  84. Kong Q, Zhang Z, Yang Q, et al. 7T TOF-MRA shows modulated orifices of lenticulostriate arteries associated with atherosclerotic plaques in patients with lacunar infarcts. Eur J Radiol 2019;118:271-276 https://doi.org/10.1016/j.ejrad.2019.07.032
  85. Ugurbil K, Auerbach E, Moeller S, et al. Brain imaging with improved acceleration and SNR at 7 Tesla obtained with 64-channel receive array. Magn Reson Med 2019;82:495-509 https://doi.org/10.1002/mrm.27695
  86. Hendriks AD, Luijten PR, Klomp DWJ, Petridou N. Potential acceleration performance of a 256-channel whole-brain receive array at 7 T. Magn Reson Med 2019;81:1659-1670 https://doi.org/10.1002/mrm.27519
  87. Li Y, Wei Z, Han S, et al. In-vivo human brain imaging at 5 T using a 48 channel Tx-Rx array. In Proceedings of the 29th Annual Meeting of ISMRM, 2021:1572
  88. Pang Y, Wu B, Jiang X, Vigneron DB, Zhang X. Tilted microstrip phased arrays with improved electromagnetic decoupling for ultrahigh-field magnetic resonance imaging. Medicine (Baltimore) 2014;93:e311 https://doi.org/10.1097/MD.0000000000000311
  89. Zhang X, Ugurbil K, Chen W. Microstrip RF surface coil design for extremely high-field MRI and spectroscopy. Magn Reson Med 2001;46:443-450 https://doi.org/10.1002/mrm.1212
  90. Yan X, Xue R, Zhang X. Closely-spaced double-row microstrip RF arrays for parallel MR imaging at ultrahigh fields. Appl Magn Reson 2015;46:1239-1248 https://doi.org/10.1007/s00723-015-0712-1
  91. Zhang X, Ugurbil K, Chen W. A microstrip transmission line volume coil for human head MR imaging at 4T. J Magn Reson 2003;161:242-251 https://doi.org/10.1016/S1090-7807(03)00004-1
  92. Avdievich NI, Solomakha G, Ruhm L, Scheffler K, Henning A. Evaluation of short folded dipole antennas as receive elements of ultra-high-field human head array. Magn Reson Med 2019;82:811-824 https://doi.org/10.1002/mrm.27754
  93. Connell IRO, Menon RS. Shape optimization of an electric dipole array for 7 Tesla neuroimaging. IEEE Trans Med Imaging 2019;38:2177-2187 https://doi.org/10.1109/tmi.2019.2906507
  94. Avdievich NI, Solomakha G, Ruhm L, Scheffler K, Henning A. Decoupling of folded-end dipole antenna elements of a 9.4 T human head array using an RF shield. NMR Biomed 2020;33:e4351 https://doi.org/10.1002/nbm.4351
  95. Clement JD, Gruetter R, Ipek O. A human cerebral and cerebellar 8-channel transceive RF dipole coil array at 7T. Magn Reson Med 2019;81:1447-1458 https://doi.org/10.1002/mrm.27476
  96. Yan X, Wei L, Xue R, Zhang X. Hybrid monopole/loop coil array for human head MR imaging at 7T. Appl Magn Reson 2015;46:541-550 https://doi.org/10.1007/s00723-015-0656-5
  97. Avdievich NI, Giapitzakis IA, Pfrommer A, Borbath T, Henning A. Combination of surface and 'vertical' loop elements improves receive performance of a human head transceiver array at 9.4 T. NMR Biomed 2018;31 [Epub ahead of print]
  98. Adriany G, Van de Moortele PF, Wiesinger F, et al. Transmit and receive transmission line arrays for 7 Tesla parallel imaging. Magn Reson Med 2005;53:434-445 https://doi.org/10.1002/mrm.20321
  99. Von Morze C, Tropp J, Banerjee S, et al. An eight-channel, nonoverlapping phased array coil with capacitive decoupling for parallel MRI at 3 T. Concepts Magn Reson B: Magn 2007;31:37-43 https://doi.org/10.1002/cmr.b.20078
  100. Tavaf N, Lagore RL, Jungst S, et al. A self-decoupled 32-channel receive array for human-brain MRI at 10.5 T. Magn Reson Med 2021;86:1759-1772 https://doi.org/10.1002/mrm.28788
  101. Hayes CE, Mathis CM, Yuan C. Surface coil phased arrays for high-resolution imaging of the carotid arteries. J Magn Reson Imaging 1996;6:109-112 https://doi.org/10.1002/jmri.1880060121
  102. Liffers A, Quick HH, Herborn CU, Ermert H, Ladd ME. Geometrical optimization of a phased array coil for high-resolution MR imaging of the carotid arteries. Magn Reson Med 2003;50:439-443 https://doi.org/10.1002/mrm.10526
  103. Ouhlous M, Moelker A, Flick HJ, et al. Quadrature coil design for high-resolution carotid artery imaging scores better than a dual phased-array coil design with the same volume coverage. J Magn Reson Imaging 2007;25:1079-1084 https://doi.org/10.1002/jmri.20894
  104. Hadley JR, Roberts JA, Goodrich KC, Buswell HR, Parker DL. Relative RF coil performance in carotid imaging. Magn Reson Imaging 2005;23:629-639 https://doi.org/10.1016/j.mri.2005.04.009
  105. Balu N, Yarnykh VL, Scholnick J, Chu B, Yuan C, Hayes C. Improvements in carotid plaque imaging using a new eight-element phased array coil at 3T. J Magn Reson Imaging 2009;30:1209-1214 https://doi.org/10.1002/jmri.21890
  106. Kraff O, Bitz AK, Breyer T, et al. A transmit/receive radiofrequency array for imaging the carotid arteries at 7 Tesla: coil design and first in vivo results. Invest Radiol 2011;46:246-254 https://doi.org/10.1097/RLI.0b013e318206cee4
  107. Hu X, Zhang L, Zhang X, et al. An 8-channel RF coil array for carotid artery MR imaging in humans at 3 T. Med Phys 2016;43:1897 https://doi.org/10.1118/1.4944500
  108. Tate Q, Kim SE, Treiman G, Parker DL, Hadley JR. Increased vessel depiction of the carotid bifurcation with a specialized 16-channel phased array coil at 3T. Magn Reson Med 2013;69:1486-1493 https://doi.org/10.1002/mrm.24380
  109. Zhang Q, Coolen BF, van den Berg S, et al. Comparison of four MR carotid surface coils at 3T. PLoS One 2019;14:e0213107 https://doi.org/10.1371/journal.pone.0213107
  110. Yuan C, Mitsumori LM, Ferguson MS, et al. In vivo accuracy of multispectral magnetic resonance imaging for identifying lipid-rich necrotic cores and intraplaque hemorrhage in advanced human carotid plaques. Circulation 2001;104:2051-2056 https://doi.org/10.1161/hc4201.097839
  111. Koning W, Bluemink JJ, Langenhuizen EA, et al. High-resolution MRI of the carotid arteries using a leaky waveguide transmitter and a high-density receive array at 7 T. Magn Reson Med 2013;69:1186-1193 https://doi.org/10.1002/mrm.24345
  112. Beck MJ, Parker DL, Bolster BD Jr, et al. Interchangeable neck shape-specific coils for a clinically realizable anterior neck phased array system. Magn Reson Med 2017;78:2460-2468 https://doi.org/10.1002/mrm.26632
  113. Ruytenberg T, Webb A, Zivkovic I. A flexible five-channel shielded-coaxial-cable (SCC) transceive neck coil for high-resolution carotid imaging at 7T. Magn Reson Med 2020;84:1672-1677 https://doi.org/10.1002/mrm.28215
  114. Zamarayeva AM, Gopalan K, Corea JR, et al. Custom, spray coated receive coils for magnetic resonance imaging. Sci Rep 2021;11:2635 https://doi.org/10.1038/s41598-021-81833-0
  115. Ruytenberg T, O'Reilly TP, Webb AG. Design and characterization of receive-only surface coil arrays at 3T with integrated solid high permittivity materials. J Magn Reson 2020;311:106681 https://doi.org/10.1016/j.jmr.2019.106681
  116. Bernstein F, Slavin G, Day RA, Macaluso F, Wolff SD. A phased array coil optimized for carotid artery imaging. In Proceedings of the International Society for Magnetic Resonance in Medicine, 1999:163
  117. Anumula S, Song HK, Wright AC, Wehrli FW. High-resolution black-blood MRI of the carotid vessel wall using phased-array coils at 1.5 and 3 Tesla. Acad Radiol 2005;12:1521-1526 https://doi.org/10.1016/j.acra.2005.08.009
  118. Sapkota N, Thapa B, Lee Y, et al. Eight-channel decoupled array for cervical spinal cord imaging at 3T: six-channel posterior and two-channel anterior array coil. Concepts Magn Reson Part B 2016;46B:90-99 https://doi.org/10.1002/cmr.b.21325
  119. Papoutsis K, Li L, Near J, Payne S, Jezzard P. A purpose-built neck coil for black-blood DANTE-prepared carotid artery imaging at 7T. Magn Reson Imaging 2017;40:53-61 https://doi.org/10.1016/j.mri.2017.04.011
  120. Zhang Z, Fan Z, Kong Q, et al. Visualization of the lenticulostriate arteries at 3T using black-blood T1-weighted intracranial vessel wall imaging: comparison with 7T TOF-MRA. Eur Radiol 2019;29:1452-1459 https://doi.org/10.1007/s00330-018-5701-y
  121. Liu Y, Breger R, Foo T, Hollrich T, Yanny L, Blechinger J. High resolution contrast-enhanced magnetic resonance angiography of carotid arteries using an array coil on a cardiovascular scanner. In Proceedings of the 22nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2000;4:2864-2865
  122. Hu Z, van der Kouwe A, Han F, et al. Motion-compensated 3D turbo spin-echo for more robust MR intracranial vessel wall imaging. Magn Reson Med 2021;86:637-647 https://doi.org/10.1002/mrm.28777
  123. Wang X, Li R, Hayes C, Balu N, Zhao X, Yuan C. A new designed 36-channel neurovascular coil at 3T. In Proceedings of the 20th Annual Meeting of ISMRM, 2012:2787
  124. Fan Z, Zhang Z, Chung YC, et al. Carotid arterial wall MRI at 3T using 3D variable-flip-angle turbo spin-echo (TSE) with flow-sensitive dephasing (FSD). J Magn Reson Imaging 2010;31:645-654 https://doi.org/10.1002/jmri.22058
  125. Avdievich NI, Giapitzakis IA, Pfrommer A, Henning A. Decoupling of a tight-fit transceiver phased array for human brain imaging at 9.4T: loop overlapping rediscovered. Magn Reson Med 2018;79:1200-1211 https://doi.org/10.1002/mrm.26754
  126. Gao Y, Mareyam A, Sun Y, et al. A 16-channel AC/DC array coil for anesthetized monkey whole-brain imaging at 7T. Neuroimage 2020;207:116396 https://doi.org/10.1016/j.neuroimage.2019.116396
  127. Han J, Xin X, Chen W. Decoupling of multi-channels RF coil and its application to intraoperative MR-guided focused ultrasound device. 2010 International Conference of Medical Image Analysis and Clinical Application, 2010:91-94
  128. Shajan G, Hoffmann J, Budde J, Adriany G, Ugurbil K, Pohmann R. Design and evaluation of an RF front-end for 9.4 T human MRI. Magn Reson Med 2011;66:596-604
  129. Quan Z, Gao Y, Qu S, et al. A 16-channel loop array for in vivo macaque whole-brain imaging at 3 T. Magn Reson Imaging 2020;68:167-172 https://doi.org/10.1016/j.mri.2020.02.008
  130. Yan X, Gore JC, Grissom WA. Self-decoupled radiofrequency coils for magnetic resonance imaging. Nat Commun 2018;9:3481 https://doi.org/10.1038/s41467-018-05585-8
  131. Lakshmanan K, Cloos M, Brown R, Lattanzi R, Sodickson DK, Wiggins GC. The "Loopole" antenna: a hybrid coil combining loop and electric dipole properties for ultrahigh-field MRI. Concepts Magn Reson Part B Magn Reson Eng 2020;2020:8886543
  132. Wu B, Qu P, Wang C, Yuan J, Shen GX. Interconnecting L/C components for decoupling and its application to lowfield open MRI array. Concepts Magn Reson Part B (Magn Reson Engineering) 2007;31B:116-126 https://doi.org/10.1002/cmr.b.20087
  133. Wu B, Zhang X, Qu P, Shen GX. Capacitively decoupled tunable loop microstrip (TLM) array at 7 T. Magn Reson Imaging 2007;25:418-424 https://doi.org/10.1016/j.mri.2006.09.031
  134. Li N, Liu S, Hu X, Luo C, Zhang X, Li Y. Electromagnetic field and radio frequency circuit co-simulation for magnetic resonance imaging dual-tuned radio frequency coils. IEEE Trans Magn 2018;54:5100504
  135. Li N, Liu S, Chen Q, et al. A fast electromagnetic field and radio frequency circuit co-simulation approach for strongly coupled coil array in magnetic resonance imaging. IEEE Trans Magn 2018;54:5100905
  136. Yan X, Wei L, Chu S, Xue R, Zhang X. Eight-channel monopole array using ICE decoupling for human head MR imaging at 7 T. Appl Magn Reson 2016;47:527-538 https://doi.org/10.1007/s00723-016-0775-7
  137. Yan X, Zhang X, Feng B, Ma C, Wei L, Xue R. 7T transmit/receive arrays using ICE decoupling for human head MR imaging. IEEE Trans Med Imaging 2014;33:1781-1787 https://doi.org/10.1109/TMI.2014.2313879
  138. Li N, Chen Q, Luo C, et al. Investigation of a dual-tuned RF coil array decoupled using ICE technique for 1 H/19 F MR imaging at 3T. IEEE Trans Magn 2020;56:1-4
  139. Connell IR, Gilbert KM, Abou-Khousa MA, Menon RS. Design of a parallel transmit head coil at 7T with magnetic wall distributed filters. IEEE Trans Med Imaging 2015;34:836-845 https://doi.org/10.1109/TMI.2014.2370533
  140. Yan X, Gore JC, Grissom WA. New resonator geometries for ICE decoupling of loop arrays. J Magn Reson 2017;277:59-67 https://doi.org/10.1016/j.jmr.2017.02.011
  141. Sui J, Wu KL. A self-decoupled antenna array using inductive and capacitive couplings cancellation. IEEE Trans Antennas Propag 2020;68:5289-5296 https://doi.org/10.1109/tap.2020.2977823