Acknowledgement
This work was supported, in part, by grants awarded by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB25000000); the National Key R&D Program of China, (Grant No. 2021YFE0204400); a National Natural Science Foundation of China (NSFC) under Grant No. 81627901; and a city grant RCYX20200714114735123; Guangdong Province grant 2020B1212060051.
References
- World Health Organization. The top 10 causes of death. World Health Organization; 2020
- Zhou Z, Li R, Zhao X, et al. Evaluation of 3D multi-contrast joint intra- and extracranial vessel wall cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2015;17:41 https://doi.org/10.1186/s12968-015-0143-z
- Qureshi AI, Caplan LR. Intracranial atherosclerosis. Lancet 2014;383:984-998 https://doi.org/10.1016/S0140-6736(13)61088-0
- Li Y, Chen Q, Wei Z, et al. One-stop MR neurovascular vessel wall imaging with a 48-channel coil system at 3 T. IEEE Trans Biomed Eng 2020;67:2317-2327 https://doi.org/10.1109/tbme.2019.2959030
- Lin M, Xin L, Min C, Haibin S, Jianping L. Chinese guideline for standard utilization of imaging for cerebrovascular diseases. Chin J Radiol 2019;53:916-940
- Mandell DM, Mossa-Basha M, Qiao Y, et al. Intracranial vessel wall MRI: principles and expert consensus recommendations of the American Society of Neuroradiology. AJNR Am J Neuroradiol 2017;38:218-229 https://doi.org/10.3174/ajnr.A4893
- Xihai Z, Cheng L, Fuhua Y. Expert consensus on techniques and application of intracranial MR vessel wall imaging in China. Chin J Radiol 2019;53:1045-1059
- Saba L, Yuan C, Hatsukami TS, et al. Carotid artery wall imaging: perspective and guidelines from the asnr vessel wall imaging study group and expert consensus recommendations of the American Society of Neuroradiology. AJNR Am J Neuroradiol 2018;39:E9-E31 https://doi.org/10.3174/ajnr.A5488
- Zhao X, Hippe DS, Li R, et al. Prevalence and characteristics of carotid artery high-risk atherosclerotic plaques in Chinese patients with cerebrovascular symptoms: a Chinese atherosclerosis risk evaluation II study. J Am Heart Assoc 2017;6:e005831 https://doi.org/10.1161/JAHA.117.005831
- Hu X, Li Y, Zhang L, Zhang X, Liu X, Chung YC. A 32-channel coil system for MR vessel wall imaging of intracranial and extracranial arteries at 3T. Magn Reson Imaging 2017;36:86-92 https://doi.org/10.1016/j.mri.2016.10.018
- Hernandez D, Kim KN. A review on the RF coil designs and trends for ultra high field magnetic resonance imaging. Investig Magn Reson Imaging 2020;24:95-122 https://doi.org/10.13104/imri.2020.24.3.95
- Cohen-Adad J, Mareyam A, Keil B, Polimeni JR, Wald LL. 32-channel RF coil optimized for brain and cervical spinal cord at 3 T. Magn Reson Med 2011;66:1198-1208 https://doi.org/10.1002/mrm.22906
- Roemer PB, Edelstein WA, Hayes CE, Souza SP, Mueller OM. The NMR phased array. Magn Reson Med 1990;16:192-225 https://doi.org/10.1002/mrm.1910160203
- Li Y, Xie Z, Pang Y, Vigneron D, Zhang X. ICE decoupling technique for RF coil array designs. Med Phys 2011;38:4086-4093 https://doi.org/10.1118/1.3598112
- Feinberg DA, Hale JD, Watts JC, Kaufman L, Mark A. Halving MR imaging time by conjugation: demonstration at 3.5 kG. Radiology 1986;161:527-531 https://doi.org/10.1148/radiology.161.2.3763926
- Haacke EM, Lindskogj E, Lin W. A fast, iterative, partial-fourier technique capable of local phase recovery. J Magn Reson (1969) 1991;92:126-145 https://doi.org/10.1016/0022-2364(91)90253-P
- Noll DC, Nishimura DG, Macovski A. Homodyne detection in magnetic resonance imaging. IEEE Trans Med Imaging 1991;10:154-163 https://doi.org/10.1109/42.79473
- Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999;42:952-962 https://doi.org/10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
- Sodickson DK, Manning WJ. Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 1997;38:591-603 https://doi.org/10.1002/mrm.1910380414
- Jakob PM, Griswold MA, Edelman RR, Sodickson DK. AUTO-SMASH: a self-calibrating technique for SMASH imaging. SiMultaneous Acquisition of Spatial Harmonics. MAGMA 1998;7:42-54 https://doi.org/10.1007/BF02592256
- Heidemann RM, Griswold MA, Haase A, Jakob PM. VD-AUTO-SMASH imaging. Magn Reson Med 2001;45:1066-1074 https://doi.org/10.1002/mrm.1141
- Griswold MA, Jakob PM, Heidemann RM, et al. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 2002;47:1202-1210 https://doi.org/10.1002/mrm.10171
- Donoho DL. Compressed sensing. IEEE Trans Information Theory 2006;52:1289-1306 https://doi.org/10.1109/TIT.2006.871582
- Lustig M, Donoho D, Pauly JM. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 2007;58:1182-1195 https://doi.org/10.1002/mrm.21391
- Liang D, Liu B, Wang J, Ying L. Accelerating SENSE using compressed sensing. Magn Reson Med 2009;62:1574-1584 https://doi.org/10.1002/mrm.22161
- Zhu B, Liu JZ, Cauley SF, Rosen BR, Rosen MS. Image reconstruction by domain-transform manifold learning. Nature 2018;555:487-492 https://doi.org/10.1038/nature25988
- Jin KH, McCann MT, Froustey E, Unser M. Deep convolutional neural network for inverse problems in imaging. IEEE Trans Image Process 2017;26:4509-4522 https://doi.org/10.1109/TIP.2017.2713099
- Breuer FA, Blaimer M, Mueller MF, et al. Controlled aliasing in volumetric parallel imaging (2D CAIPIRINHA). Magn Reson Med 2006;55:549-556 https://doi.org/10.1002/mrm.20787
- Qiao Y, Steinman DA, Qin Q, et al. Intracranial arterial wall imaging using three-dimensional high isotropic resolution black blood MRI at 3.0 Tesla. J Magn Reson Imaging 2011;34:22-30 https://doi.org/10.1002/jmri.22592
- Xie Y, Yang Q, Xie G, Pang J, Fan Z, Li D. Improved black-blood imaging using DANTE-SPACE for simultaneous carotid and intracranial vessel wall evaluation. Magn Reson Med 2016;75:2286-2294 https://doi.org/10.1002/mrm.25785
- Zhang L, Zhang N, Wu J, et al. High resolution three dimensional intracranial arterial wall imaging at 3 T using T1 weighted SPACE. Magn Reson Imaging 2015;33:1026-1034 https://doi.org/10.1016/j.mri.2015.06.006
- Wang H, Qiu Z, Su S, et al. Parameter optimization framework on wave gradients of Wave-CAIPI imaging. Magn Reson Med 2020;83:1659-1672 https://doi.org/10.1002/mrm.28034
- Qiu Z, Jia S, Su S, et al. Highly accelerated parallel MRI using wave encoding and virtual conjugate coils. Magn Reson Med 2021;86:1345-1359 https://doi.org/10.1002/mrm.28803
- Yuan J, Usman A, Reid SA, et al. Three-dimensional black-blood multi-contrast carotid imaging using compressed sensing: a repeatability study. MAGMA 2018;31:183-190 https://doi.org/10.1007/s10334-017-0640-1
- Zhu C, Tian B, Chen L, et al. Accelerated whole brain intracranial vessel wall imaging using black blood fast spin echo with compressed sensing (CS-SPACE). MAGMA 2018;31:457-467 https://doi.org/10.1007/s10334-017-0667-3
- Jia S, Zhang L, Ren L, et al. Joint intracranial and carotid vessel wall imaging in 5 minutes using compressed sensing accelerated DANTE-SPACE. Eur Radiol 2020;30:119-127 https://doi.org/10.1007/s00330-019-06366-7
- Liu Y, Zhan Z, Cai JF, Guo D, Chen Z, Qu X. Projected iterative soft-thresholding algorithm for tight frames in compressed sensing magnetic resonance imaging. IEEE Trans Med Imaging 2016;35:2130-2140 https://doi.org/10.1109/TMI.2016.2550080
- Ravishankar S, Bresler Y. MR image reconstruction from highly undersampled k-space data by dictionary learning. IEEE Trans Med Imaging 2011;30:1028-1041 https://doi.org/10.1109/TMI.2010.2090538
- Aharon M, Elad M, Bruckstein A. K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans Signal Process 2006;54:4311-4322 https://doi.org/10.1109/TSP.2006.881199
- Lai Z, Qu X, Liu Y, et al. Image reconstruction of compressed sensing MRI using graph-based redundant wavelet transform. Med Image Anal 2016;27:93-104 https://doi.org/10.1016/j.media.2015.05.012
- Zhan Z, Cai JF, Guo D, Liu Y, Chen Z, Qu X. Fast multiclass dictionaries learning with geometrical directions in MRI reconstruction. IEEE Trans Biomed Eng 2016;63:1850-1861 https://doi.org/10.1109/TBME.2015.2503756
- Cai JM, Hatsukami TS, Ferguson MS, Small R, Polissar NL, Yuan C. Classification of human carotid atherosclerotic lesions with in vivo multicontrast magnetic resonance imaging. Circulation 2002;106:1368-1373 https://doi.org/10.1161/01.CIR.0000028591.44554.F9
- Li F, McDermott MM, Li D, et al. The association of lesion eccentricity with plaque morphology and components in the superficial femoral artery: a high-spatial-resolution, multi-contrast weighted CMR study. J Cardiovasc Magn Reson 2010;12:37 https://doi.org/10.1186/1532-429X-12-37
- Lai Z, Qu X, Lu H, et al. Sparse MRI reconstruction using multi-contrast image guided graph representation. Magn Reson Imaging 2017;43:95-104 https://doi.org/10.1016/j.mri.2017.07.009
- Gong E, Huang F, Ying K, Wu W, Wang S, Yuan C. PROMISE: parallel-imaging and compressed-sensing reconstruction of multicontrast imaging using SharablE information. Magn Reson Med 2015;73:523-535 https://doi.org/10.1002/mrm.25142
- Koolstra K, van Gemert J, Bornert P, Webb A, Remis R. Accelerating compressed sensing in parallel imaging reconstructions using an efficient circulant preconditioner for cartesian trajectories. Magn Reson Med 2019;81:670-685 https://doi.org/10.1002/mrm.27371
- Jia S, Qiu Z, Zhang L, Liu X, Zheng H, Liang D. Highly accelerated vessel wall imaging using CAIPIRINHA accelerated SPACE and IFR-CS. In Proceedings of the 28th Annual Meeting of ISMRM, 2020:1325
- Kim TH, Setsompop K, Haldar JP. LORAKS makes better SENSE: phase-constrained partial fourier SENSE reconstruction without phase calibration. Magn Reson Med 2017;77:1021-1035 https://doi.org/10.1002/mrm.26182
- Haldar JP, Zhuo J. P-LORAKS: low-rank modeling of local k-space neighborhoods with parallel imaging data. Magn Reson Med 2016;75:1499-1514 https://doi.org/10.1002/mrm.25717
- Wang S, Su Z, Ying L, et al. Accelerating magnetic resonance imaging via deep learning. Proc IEEE Int Symp Biomed Imaging 2016;2016:514-517
- Yang G, Yu S, Dong H, et al. DAGAN: deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction. IEEE Trans Med Imaging 2018;37:1310-1321 https://doi.org/10.1109/tmi.2017.2785879
- Quan TM, Nguyen-Duc T, Jeong WK. Compressed sensing MRI reconstruction using a generative adversarial network with a cyclic loss. IEEE Trans Med Imaging 2018;37:1488-1497 https://doi.org/10.1109/TMI.2018.2820120
- Yang Y, Sun J, Li H, Xu Z. ADMM-CSNet: a deep learning approach for image compressive sensing. IEEE Trans Pattern Anal Mach Intell 2020;42:521-538 https://doi.org/10.1109/tpami.2018.2883941
- Kwon K, Kim D, Park H. A parallel MR imaging method using multilayer perceptron. Med Phys 2017;44:6209-6224 https://doi.org/10.1002/mp.12600
- Uecker M, Hohage T, Block KT, Frahm J. Image reconstruction by regularized nonlinear inversion--joint estimation of coil sensitivities and image content. Magn Reson Med 2008;60:674-682 https://doi.org/10.1002/mrm.21691
- Liang D, Cheng J, Ke Z, Ying L. Deep magnetic resonance image reconstruction: inverse problems meet neural networks. IEEE Signal Process Mag 2020;37:141-151 https://doi.org/10.1109/msp.2019.2950557
- Wang S, Xiao T, Liu Q, Zheng H. Deep learning for fast MR imaging: a review for learning reconstruction from incomplete k-space data. Biomed Signal Process Control 2021;68:102579 https://doi.org/10.1016/j.bspc.2021.102579
- Lee D, Yoo J, Ye JC. Deep residual learning for compressed sensing MRI. Proc IEEE Int Symp Biomed Imaging 2017:15-18
- Lindenholz A, van der Kolk AG, Zwanenburg JJM, Hendrikse J. The use and pitfalls of intracranial vessel wall imaging: how we do it. Radiology 2018;286:12-28 https://doi.org/10.1148/radiol.2017162096
- Cheng J, Jia S, Ying L, et al. Improved parallel image reconstruction using feature refinement. Magn Reson Med 2018;80:211-223 https://doi.org/10.1002/mrm.27024
- Chen Q, Xie G, Luo C, et al. A dedicated 36-channel receive array for fetal MRI at 3T. IEEE Trans Med Imaging 2018;37:2290-2297 https://doi.org/10.1109/tmi.2018.2839191
- Li N, Zheng H, Xu G, et al. Simultaneous head and spine MR imaging in children using a dedicated multichannel receiver system at 3T. IEEE Trans Biomed Eng 2021;68:3659-3670 https://doi.org/10.1109/TBME.2021.3082149
- Gruber B, Froeling M, Leiner T, Klomp DWJ. RF coils: a practical guide for nonphysicists. J Magn Reson Imaging 2018;48:590-604 https://doi.org/10.1002/jmri.26187
- Ritz K, Denswil NP, Stam OC, van Lieshout JJ, Daemen MJ. Cause and mechanisms of intracranial atherosclerosis. Circulation 2014;130:1407-1414 https://doi.org/10.1161/CIRCULATIONAHA.114.011147
- Wang Y, Zhao X, Liu L, et al. Prevalence and outcomes of symptomatic intracranial large artery stenoses and occlusions in China: the Chinese intracranial atherosclerosis (CICAS) study. Stroke 2014;45:663-669 https://doi.org/10.1161/STROKEAHA.113.003508
- Setsompop K, Gagoski BA, Polimeni JR, Witzel T, Wedeen VJ, Wald LL. Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty. Magn Reson Med 2012;67:1210-1224 https://doi.org/10.1002/mrm.23097
- Bookwalter CA, Griswold MA, Sunshine JL, Duerk JL. Analysis of signal-to-noise behavior in Cartesian continuous sampling sequences: predictions and experimental validation of opportunities for improved image SNR. Magn Reson Med 2007;58:819-824 https://doi.org/10.1002/mrm.21321
- Vasanawala SS, Lustig M. Advances in pediatric body MRI. Pediatr Radiol 2011;41 Suppl 2:549-554 https://doi.org/10.1007/s00247-011-2103-6
- Saib G, Gras V, Mauconduit F, et al. Time-of-flight angiography at 7T using TONE double spokes with parallel transmission. Magn Reson Imaging 2019;61:104-115 https://doi.org/10.1016/j.mri.2019.05.018
- Wiggins GC, Triantafyllou C, Potthast A, Reykowski A, Nittka M, Wald LL. 32-channel 3 Tesla receive-only phased-array head coil with soccer-ball element geometry. Magn Reson Med 2006;56:216-223 https://doi.org/10.1002/mrm.20925
- Wiggins GC, Polimeni JR, Potthast A, Schmitt M, Alagappan V, Wald LL. 96-channel receive-only head coil for 3 Tesla: design optimization and evaluation. Magn Reson Med 2009;62:754-762 https://doi.org/10.1002/mrm.22028
- Porter JR, Wright SM, Reykowski A. A 16-element phased-array head coil. Magn Reson Med 1998;40:272-279 https://doi.org/10.1002/mrm.1910400213
- Lattanzi R, Grant AK, Polimeni JR, et al. Performance evaluation of a 32-element head array with respect to the ultimate intrinsic SNR. NMR Biomed 2010;23:142-151 https://doi.org/10.1002/nbm.1435
- Reiss-Zimmermann M, Gutberlet M, Kostler H, Fritzsch D, Hoffmann KT. Improvement of SNR and acquisition acceleration using a 32-channel head coil compared to a 12-channel head coil at 3T. Acta Radiol 2013;54:702-708 https://doi.org/10.1177/0284185113479051
- Wiesinger F, Boesiger P, Pruessmann KP. Electrodynamics and ultimate SNR in parallel MR imaging. Magn Reson Med 2004;52:376-390 https://doi.org/10.1002/mrm.20183
- Wiesinger F, De Zanche N, Pruessmann KP. Approaching ultimate SNR with finite coil arrays. In Proceedings of the 13th Annual Meeting of ISMRM, 2005:672
- Vaidya MV, Sodickson DK, Lattanzi R. Approaching ultimate intrinsic SNR in a uniform spherical sample with finite arrays of loop coils. Concepts Magn Reson Part B Magn Reson Eng 2014;44:53-65 https://doi.org/10.1002/cmr.b.21268
- Keil B, Wald LL. Massively parallel MRI detector arrays. J Magn Reson 2013;229:75-89 https://doi.org/10.1016/j.jmr.2013.02.001
- Han H, Song AW, Truong TK. Integrated parallel reception, excitation, and shimming (iPRES). Magn Reson Med 2013;70:241-247 https://doi.org/10.1002/mrm.24766
- Keil B, Blau JN, Biber S, et al. A 64-channel 3T array coil for accelerated brain MRI. Magn Reson Med 2013;70:248-258 https://doi.org/10.1002/mrm.24427
- Mahmutovic M, Scholz A, Kutscha N, et al. A 64-channel brain array coil with an integrated 16-channel field monitoring system for 3T MRI. In Proceedings of the 29th Annual Meeting of ISMRM, 2021:0623
- Li Y, Lee J, Zhang L, et al. Design and testing of a 24-channel head coil for MR imaging at 3T. Magn Reson Imaging 2019;58:162-173 https://doi.org/10.1016/j.mri.2019.01.020
- Cogswell PM, Trzasko JD, Gray EM, et al. Application of adaptive image receive coil technology for whole-brain imaging. AJR Am J Roentgenol 2021;216:552-559 https://doi.org/10.2214/AJR.20.22812
- Kong Q, Zhang Z, Yang Q, et al. 7T TOF-MRA shows modulated orifices of lenticulostriate arteries associated with atherosclerotic plaques in patients with lacunar infarcts. Eur J Radiol 2019;118:271-276 https://doi.org/10.1016/j.ejrad.2019.07.032
- Ugurbil K, Auerbach E, Moeller S, et al. Brain imaging with improved acceleration and SNR at 7 Tesla obtained with 64-channel receive array. Magn Reson Med 2019;82:495-509 https://doi.org/10.1002/mrm.27695
- Hendriks AD, Luijten PR, Klomp DWJ, Petridou N. Potential acceleration performance of a 256-channel whole-brain receive array at 7 T. Magn Reson Med 2019;81:1659-1670 https://doi.org/10.1002/mrm.27519
- Li Y, Wei Z, Han S, et al. In-vivo human brain imaging at 5 T using a 48 channel Tx-Rx array. In Proceedings of the 29th Annual Meeting of ISMRM, 2021:1572
- Pang Y, Wu B, Jiang X, Vigneron DB, Zhang X. Tilted microstrip phased arrays with improved electromagnetic decoupling for ultrahigh-field magnetic resonance imaging. Medicine (Baltimore) 2014;93:e311 https://doi.org/10.1097/MD.0000000000000311
- Zhang X, Ugurbil K, Chen W. Microstrip RF surface coil design for extremely high-field MRI and spectroscopy. Magn Reson Med 2001;46:443-450 https://doi.org/10.1002/mrm.1212
- Yan X, Xue R, Zhang X. Closely-spaced double-row microstrip RF arrays for parallel MR imaging at ultrahigh fields. Appl Magn Reson 2015;46:1239-1248 https://doi.org/10.1007/s00723-015-0712-1
- Zhang X, Ugurbil K, Chen W. A microstrip transmission line volume coil for human head MR imaging at 4T. J Magn Reson 2003;161:242-251 https://doi.org/10.1016/S1090-7807(03)00004-1
- Avdievich NI, Solomakha G, Ruhm L, Scheffler K, Henning A. Evaluation of short folded dipole antennas as receive elements of ultra-high-field human head array. Magn Reson Med 2019;82:811-824 https://doi.org/10.1002/mrm.27754
- Connell IRO, Menon RS. Shape optimization of an electric dipole array for 7 Tesla neuroimaging. IEEE Trans Med Imaging 2019;38:2177-2187 https://doi.org/10.1109/tmi.2019.2906507
- Avdievich NI, Solomakha G, Ruhm L, Scheffler K, Henning A. Decoupling of folded-end dipole antenna elements of a 9.4 T human head array using an RF shield. NMR Biomed 2020;33:e4351 https://doi.org/10.1002/nbm.4351
- Clement JD, Gruetter R, Ipek O. A human cerebral and cerebellar 8-channel transceive RF dipole coil array at 7T. Magn Reson Med 2019;81:1447-1458 https://doi.org/10.1002/mrm.27476
- Yan X, Wei L, Xue R, Zhang X. Hybrid monopole/loop coil array for human head MR imaging at 7T. Appl Magn Reson 2015;46:541-550 https://doi.org/10.1007/s00723-015-0656-5
- Avdievich NI, Giapitzakis IA, Pfrommer A, Borbath T, Henning A. Combination of surface and 'vertical' loop elements improves receive performance of a human head transceiver array at 9.4 T. NMR Biomed 2018;31 [Epub ahead of print]
- Adriany G, Van de Moortele PF, Wiesinger F, et al. Transmit and receive transmission line arrays for 7 Tesla parallel imaging. Magn Reson Med 2005;53:434-445 https://doi.org/10.1002/mrm.20321
- Von Morze C, Tropp J, Banerjee S, et al. An eight-channel, nonoverlapping phased array coil with capacitive decoupling for parallel MRI at 3 T. Concepts Magn Reson B: Magn 2007;31:37-43 https://doi.org/10.1002/cmr.b.20078
- Tavaf N, Lagore RL, Jungst S, et al. A self-decoupled 32-channel receive array for human-brain MRI at 10.5 T. Magn Reson Med 2021;86:1759-1772 https://doi.org/10.1002/mrm.28788
- Hayes CE, Mathis CM, Yuan C. Surface coil phased arrays for high-resolution imaging of the carotid arteries. J Magn Reson Imaging 1996;6:109-112 https://doi.org/10.1002/jmri.1880060121
- Liffers A, Quick HH, Herborn CU, Ermert H, Ladd ME. Geometrical optimization of a phased array coil for high-resolution MR imaging of the carotid arteries. Magn Reson Med 2003;50:439-443 https://doi.org/10.1002/mrm.10526
- Ouhlous M, Moelker A, Flick HJ, et al. Quadrature coil design for high-resolution carotid artery imaging scores better than a dual phased-array coil design with the same volume coverage. J Magn Reson Imaging 2007;25:1079-1084 https://doi.org/10.1002/jmri.20894
- Hadley JR, Roberts JA, Goodrich KC, Buswell HR, Parker DL. Relative RF coil performance in carotid imaging. Magn Reson Imaging 2005;23:629-639 https://doi.org/10.1016/j.mri.2005.04.009
- Balu N, Yarnykh VL, Scholnick J, Chu B, Yuan C, Hayes C. Improvements in carotid plaque imaging using a new eight-element phased array coil at 3T. J Magn Reson Imaging 2009;30:1209-1214 https://doi.org/10.1002/jmri.21890
- Kraff O, Bitz AK, Breyer T, et al. A transmit/receive radiofrequency array for imaging the carotid arteries at 7 Tesla: coil design and first in vivo results. Invest Radiol 2011;46:246-254 https://doi.org/10.1097/RLI.0b013e318206cee4
- Hu X, Zhang L, Zhang X, et al. An 8-channel RF coil array for carotid artery MR imaging in humans at 3 T. Med Phys 2016;43:1897 https://doi.org/10.1118/1.4944500
- Tate Q, Kim SE, Treiman G, Parker DL, Hadley JR. Increased vessel depiction of the carotid bifurcation with a specialized 16-channel phased array coil at 3T. Magn Reson Med 2013;69:1486-1493 https://doi.org/10.1002/mrm.24380
- Zhang Q, Coolen BF, van den Berg S, et al. Comparison of four MR carotid surface coils at 3T. PLoS One 2019;14:e0213107 https://doi.org/10.1371/journal.pone.0213107
- Yuan C, Mitsumori LM, Ferguson MS, et al. In vivo accuracy of multispectral magnetic resonance imaging for identifying lipid-rich necrotic cores and intraplaque hemorrhage in advanced human carotid plaques. Circulation 2001;104:2051-2056 https://doi.org/10.1161/hc4201.097839
- Koning W, Bluemink JJ, Langenhuizen EA, et al. High-resolution MRI of the carotid arteries using a leaky waveguide transmitter and a high-density receive array at 7 T. Magn Reson Med 2013;69:1186-1193 https://doi.org/10.1002/mrm.24345
- Beck MJ, Parker DL, Bolster BD Jr, et al. Interchangeable neck shape-specific coils for a clinically realizable anterior neck phased array system. Magn Reson Med 2017;78:2460-2468 https://doi.org/10.1002/mrm.26632
- Ruytenberg T, Webb A, Zivkovic I. A flexible five-channel shielded-coaxial-cable (SCC) transceive neck coil for high-resolution carotid imaging at 7T. Magn Reson Med 2020;84:1672-1677 https://doi.org/10.1002/mrm.28215
- Zamarayeva AM, Gopalan K, Corea JR, et al. Custom, spray coated receive coils for magnetic resonance imaging. Sci Rep 2021;11:2635 https://doi.org/10.1038/s41598-021-81833-0
- Ruytenberg T, O'Reilly TP, Webb AG. Design and characterization of receive-only surface coil arrays at 3T with integrated solid high permittivity materials. J Magn Reson 2020;311:106681 https://doi.org/10.1016/j.jmr.2019.106681
- Bernstein F, Slavin G, Day RA, Macaluso F, Wolff SD. A phased array coil optimized for carotid artery imaging. In Proceedings of the International Society for Magnetic Resonance in Medicine, 1999:163
- Anumula S, Song HK, Wright AC, Wehrli FW. High-resolution black-blood MRI of the carotid vessel wall using phased-array coils at 1.5 and 3 Tesla. Acad Radiol 2005;12:1521-1526 https://doi.org/10.1016/j.acra.2005.08.009
- Sapkota N, Thapa B, Lee Y, et al. Eight-channel decoupled array for cervical spinal cord imaging at 3T: six-channel posterior and two-channel anterior array coil. Concepts Magn Reson Part B 2016;46B:90-99 https://doi.org/10.1002/cmr.b.21325
- Papoutsis K, Li L, Near J, Payne S, Jezzard P. A purpose-built neck coil for black-blood DANTE-prepared carotid artery imaging at 7T. Magn Reson Imaging 2017;40:53-61 https://doi.org/10.1016/j.mri.2017.04.011
- Zhang Z, Fan Z, Kong Q, et al. Visualization of the lenticulostriate arteries at 3T using black-blood T1-weighted intracranial vessel wall imaging: comparison with 7T TOF-MRA. Eur Radiol 2019;29:1452-1459 https://doi.org/10.1007/s00330-018-5701-y
- Liu Y, Breger R, Foo T, Hollrich T, Yanny L, Blechinger J. High resolution contrast-enhanced magnetic resonance angiography of carotid arteries using an array coil on a cardiovascular scanner. In Proceedings of the 22nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2000;4:2864-2865
- Hu Z, van der Kouwe A, Han F, et al. Motion-compensated 3D turbo spin-echo for more robust MR intracranial vessel wall imaging. Magn Reson Med 2021;86:637-647 https://doi.org/10.1002/mrm.28777
- Wang X, Li R, Hayes C, Balu N, Zhao X, Yuan C. A new designed 36-channel neurovascular coil at 3T. In Proceedings of the 20th Annual Meeting of ISMRM, 2012:2787
- Fan Z, Zhang Z, Chung YC, et al. Carotid arterial wall MRI at 3T using 3D variable-flip-angle turbo spin-echo (TSE) with flow-sensitive dephasing (FSD). J Magn Reson Imaging 2010;31:645-654 https://doi.org/10.1002/jmri.22058
- Avdievich NI, Giapitzakis IA, Pfrommer A, Henning A. Decoupling of a tight-fit transceiver phased array for human brain imaging at 9.4T: loop overlapping rediscovered. Magn Reson Med 2018;79:1200-1211 https://doi.org/10.1002/mrm.26754
- Gao Y, Mareyam A, Sun Y, et al. A 16-channel AC/DC array coil for anesthetized monkey whole-brain imaging at 7T. Neuroimage 2020;207:116396 https://doi.org/10.1016/j.neuroimage.2019.116396
- Han J, Xin X, Chen W. Decoupling of multi-channels RF coil and its application to intraoperative MR-guided focused ultrasound device. 2010 International Conference of Medical Image Analysis and Clinical Application, 2010:91-94
- Shajan G, Hoffmann J, Budde J, Adriany G, Ugurbil K, Pohmann R. Design and evaluation of an RF front-end for 9.4 T human MRI. Magn Reson Med 2011;66:596-604
- Quan Z, Gao Y, Qu S, et al. A 16-channel loop array for in vivo macaque whole-brain imaging at 3 T. Magn Reson Imaging 2020;68:167-172 https://doi.org/10.1016/j.mri.2020.02.008
- Yan X, Gore JC, Grissom WA. Self-decoupled radiofrequency coils for magnetic resonance imaging. Nat Commun 2018;9:3481 https://doi.org/10.1038/s41467-018-05585-8
- Lakshmanan K, Cloos M, Brown R, Lattanzi R, Sodickson DK, Wiggins GC. The "Loopole" antenna: a hybrid coil combining loop and electric dipole properties for ultrahigh-field MRI. Concepts Magn Reson Part B Magn Reson Eng 2020;2020:8886543
- Wu B, Qu P, Wang C, Yuan J, Shen GX. Interconnecting L/C components for decoupling and its application to lowfield open MRI array. Concepts Magn Reson Part B (Magn Reson Engineering) 2007;31B:116-126 https://doi.org/10.1002/cmr.b.20087
- Wu B, Zhang X, Qu P, Shen GX. Capacitively decoupled tunable loop microstrip (TLM) array at 7 T. Magn Reson Imaging 2007;25:418-424 https://doi.org/10.1016/j.mri.2006.09.031
- Li N, Liu S, Hu X, Luo C, Zhang X, Li Y. Electromagnetic field and radio frequency circuit co-simulation for magnetic resonance imaging dual-tuned radio frequency coils. IEEE Trans Magn 2018;54:5100504
- Li N, Liu S, Chen Q, et al. A fast electromagnetic field and radio frequency circuit co-simulation approach for strongly coupled coil array in magnetic resonance imaging. IEEE Trans Magn 2018;54:5100905
- Yan X, Wei L, Chu S, Xue R, Zhang X. Eight-channel monopole array using ICE decoupling for human head MR imaging at 7 T. Appl Magn Reson 2016;47:527-538 https://doi.org/10.1007/s00723-016-0775-7
- Yan X, Zhang X, Feng B, Ma C, Wei L, Xue R. 7T transmit/receive arrays using ICE decoupling for human head MR imaging. IEEE Trans Med Imaging 2014;33:1781-1787 https://doi.org/10.1109/TMI.2014.2313879
- Li N, Chen Q, Luo C, et al. Investigation of a dual-tuned RF coil array decoupled using ICE technique for 1 H/19 F MR imaging at 3T. IEEE Trans Magn 2020;56:1-4
- Connell IR, Gilbert KM, Abou-Khousa MA, Menon RS. Design of a parallel transmit head coil at 7T with magnetic wall distributed filters. IEEE Trans Med Imaging 2015;34:836-845 https://doi.org/10.1109/TMI.2014.2370533
- Yan X, Gore JC, Grissom WA. New resonator geometries for ICE decoupling of loop arrays. J Magn Reson 2017;277:59-67 https://doi.org/10.1016/j.jmr.2017.02.011
- Sui J, Wu KL. A self-decoupled antenna array using inductive and capacitive couplings cancellation. IEEE Trans Antennas Propag 2020;68:5289-5296 https://doi.org/10.1109/tap.2020.2977823