Park, Heon-Jei;Lee, Jun Woo;Kyung, Ji Hoon;Kim, Kyeongtaek
Journal of Korean Society of Industrial and Systems Engineering
/
v.44
no.4
/
pp.169-176
/
2021
Maritime monitoring requirements have been beyond human operators capabilities due to the broadness of the coverage area and the variety of monitoring activities, e.g. illegal migration, or security threats by foreign warships. Abnormal vessel movement can be defined as an unreasonable movement deviation from the usual trajectory, speed, or other traffic parameters. Detection of the abnormal vessel movement requires the operators not only to pay short-term attention but also to have long-term trajectory trace ability. Recent advances in deep learning have shown the potential of deep learning techniques to discover hidden and more complex relations that often lie in low dimensional latent spaces. In this paper, we propose a deep autoencoder-based clustering model for automatic detection of vessel movement anomaly to assist monitoring operators to take actions on the vessel for more investigation. We first generate gridded trajectory images by mapping the raw vessel trajectories into two dimensional matrix. Based on the gridded image input, we test the proposed model along with the other deep autoencoder-based models for the abnormal trajectory data generated through rotation and speed variation from normal trajectories. We show that the proposed model improves detection accuracy for the generated abnormal trajectories compared to the other models.
Ji Hong, Min;Seungju, Lee;Deuk Jae, Cho;Jong-Hwa, Baek;Hyunwoo, Park
Journal of Navigation and Port Research
/
v.46
no.6
/
pp.576-584
/
2022
AIS is widely utilized in vessel traffic services for marine traffic safety. In 2021, Korea deployed the high-speed maritime wireless communication system (LTE-Maritime) on the sea following IMO's proposal for the introduction of e-Navigation. In this paper, vessel trajectory data from AIS and LTE-Maritime were used for vessel trajectory prediction to compare and analyze the two systems. The results show that the trajectory prediction error of LTE-Maritime was smaller than that of AIS due to the granular and uniform data provided by LTE-Maritime. Additionally, it was revealed that time interval is the most important factor influencing the errors in trajectory prediction, with the prediction error of LTE-Maritime growing at a slower rate of 17% than AIS. This research contributes to the literature by quantitatively comparing AIS and LTE-Maritime systems for the first time.
International Journal of Naval Architecture and Ocean Engineering
/
v.7
no.5
/
pp.817-832
/
2015
This paper presents a state feedback based backstepping control algorithm to address the trajectory tracking problem of an underactuated Unmanned Surface Vessel (USV) in the horizontal plane. A nonlinear three Degree of Freedom (DOF) underactuated dynamic model for USV is considered, and trajectory tracking controller that can track both curve trajectory and straight line trajectory with high accuracy is designed as the well known Persistent Exciting (PE) conditions of yaw velocity is completely relaxed in our study. The proposed controller has further been enriched by incorporating an integral action additionally for enhancing the steady state performance and control precision of the USV trajectory tracking control system. Global stability of the overall system is proved by Lyapunov theory and Barbalat's Lemma, and then simulation experiments are carried out to demonstrate the effectiveness of the controller designed.
Journal of Korean Society of Industrial and Systems Engineering
/
v.43
no.4
/
pp.190-197
/
2020
Recently there was an incident that military radars, coastal CCTVs and other surveillance equipment captured a small rubber boat smuggling a group of illegal immigrants into South Korea, but guards on duty failed to notice it until after they reached the shore and fled. After that, the detection of such vessels before it reach to the Korean shore has emerged as an important issue to be solved. In the fields of marine navigation, Automatic Identification System (AIS) is widely equipped in vessels, and the vessels incessantly transmits its position information. In this paper, we propose a method of automatically identifying abnormally behaving vessels with AIS using convolutional autoencoder (CAE). Vessel anomaly detection can be referred to as the process of detecting its trajectory that significantly deviated from the majority of the trajectories. In this method, the normal vessel trajectory is gridded as an image, and CAE are trained with images from historical normal vessel trajectories to reconstruct the input image. Features of normal trajectories are captured into weights in CAE. As a result, images of the trajectories of abnormal behaving vessels are poorly reconstructed and end up with large reconstruction errors. We show how correctly the model detects simulated abnormal trajectories shifted a few pixel from normal trajectories. Since the proposed model identifies abnormally behaving ships using actual AIS data, it is expected to contribute to the strengthening of security level when it is applied to various maritime surveillance systems.
Journal of the Korean Society of Marine Environment & Safety
/
v.26
no.7
/
pp.759-766
/
2020
In recent years, the maritime traffic environment has been changing in various ways, and the traffic volume has been increasing constantly. Accordingly, the requirements for maritime traffic analysis have become diversified. To this end, traffic characteristics must first be analyzed using vessel trajectory data. However, as the conventional method is mostly manual, it requires a considerable amount of time and effort, and errors may occur during data processing. In addition, ensuring the reliability of the analysis results is difficult, because this method considers the subjective opinion of analysts. Therefore, in this paper, we propose an automated method of traffic network generation for maritime traffic analysis. In the experiment, spatiotemporal features are analyzed using data collected at Mokpo Harbor over six months. The proposed method can automatically generate a traffic network reflecting the traffic characteristics of the experimental area. In addition, it can be applied to a large amount of trajectory data. Finally, as the spatiotemporal characteristics can be analyzed using the traffic network, the proposed method is expected to be used in various maritime traffic analyses.
KIM, Kwang-Il;KIM, Keun-Huyng;YOO, Sang-Lok;KIM, Seok-Jong
Journal of the Korean Society of Fisheries and Ocean Technology
/
v.57
no.4
/
pp.334-341
/
2021
The fishery compensation by marine spatial planning such as routeing of ships and offshore wind farms is required objective data on whether fishing vessels are engaged in a target area. There has still been no research that calculated the number of fishing operation days scientifically. This study proposes a novel method for calculating the number of fishing operation days using the fishing trajectory data when investigating fishery compensation in marine spatial planning areas. It was calculated by multiplying the average reporting interval of trajectory data, the number of collected data, the status weighting factor, and the weighting factor for fishery compensation according to the location of each fishing vessel. In particular, the number of fishing operation days for the compensation of driftnet fishery was considered the daily average number of large vessels from the port and the fishery loss hours for avoiding collisions with them. The target area for applying the proposed method is the routeing area of ships of Jeju outer port. The yearly average fishing operation days were calculated from three years of data from 2017 to 2019. As a result of the study, the yearly average fishing operation days for the compensation of each fishing village fraternity varied from 0.0 to 39.0 days. The proposed method can be used for fishery compensation as an objective indicator in various marine spatial planning areas.
International Journal of Fuzzy Logic and Intelligent Systems
/
v.15
no.4
/
pp.268-276
/
2015
A ship's sailing route or plan is determined by the master as the decision maker of the vessel, and depends on the characteristics of the navigational environment and the conditions of the ship. The trajectory, which appears as a result of the ship's navigation, is monitored and stored by a Vessel Traffic Service center, and is used for an analysis of the ship's navigational pattern and risk assessment within a particular area. However, such an analysis is performed in the same manner, despite the different navigational environments between coastal areas and the harbor limits. The navigational environment within the harbor limits changes rapidly owing to construction of the port facilities, dredging operations, and so on. In this study, a support vector machine was used for processing and modeling the trajectory data. A K-fold cross-validation and a grid search were used for selecting the optimal parameters. A complicated traffic route similar to the circumstances of the harbor limits was constructed for a validation of the model. A group of vessels was composed, each vessel of which was given various speed and course changes along a specified route. As a result of the machine learning, the optimal route and voyage data model were obtained. Finally, the model was presented to Vessel Traffic Service operators to detect any anomalous vessel behaviors. Using the proposed data modeling method, we intend to support the decision-making of Vessel Traffic Service operators in terms of navigational patterns and their characteristics.
Park, Sung-Kook;Lee, Ji-Hong;Jun, Bong-Huan;Lee, Pan-Mook
Journal of Ocean Engineering and Technology
/
v.23
no.5
/
pp.61-70
/
2009
An AUV (Autonomous Underwater Vehicle) is an unmanned underwater vessel to investigate sea environments and deep sea resource. To be completely autonomous, AUV must have the ability to home and dock to the launcher. In this paper, we consider a class of homing trajectory planning problem for an AUV with kinematic and tactical constraints in horizontal plane. Since the AUV under consideration has underactuated characteristics, trajectory for this kind of AUV must be designed considering the underactuated characteristics. Otherwise, the AUV cannot follow the trajectory. Proposed homing trajectory panning method that called VGM (Virtual Goal Method) based on visibility graph takes the underactated characteristics into consideration. And it guarantees shortest collision free trajectory. For tracking control, we propose a PD controller by simple guidance law. Finally, we validate the trajectory planning algorithm and tracking controller by numerical simulation and ocean engineering basin experiment in KORDI.
The analysis of maritime traffic refers to the processes that are used to analyze the environmental characteristics of the target area and, based on this analysis, predict the traffic pattern of the vessels. In recent years, maritime traffic analysis has become significant with increase maritime traffic volume and expansion of VTS coverage area. In addition, maritime traffic analysis is also applicable in the safety assessment of port facilities and the VTS (Vessel Traffic Service). In this paper, we propose a method to analyze the vessels' traffic pattern by using the heat map and the centroid method. This method is efficient for the analysis of the vessel trajectory data where spatial characteristics change with time. In the experiments, the traffic density and centroid by time have were analyzed. Trajectory data collected at Mokpo harbor was adopted. Finally, we reviewed the experimental results to verify the feasibility of the proposed method as a maritime traffic analysis method.
Proceedings of the Korean Institute of Navigation and Port Research Conference
/
2021.11a
/
pp.139-141
/
2021
In the maritime digital forensic part, it is very important and difficult process that analysis of data and information with vessel navigation system's binary log data for situation awareness of maritime accident. In recent years, anaysis of vessel's navigation system's trajectory information is an essential element of maritime accident investigation for vessel digital forensic process. So, we analysis of maritime navigation systems of vessel and feature of device and environments. In the future, we will research on information of ship's trajectory and movement for useful forensic service.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.