• Title/Summary/Keyword: Very Fine Sand

Search Result 103, Processing Time 0.024 seconds

Engineering properties of pervious concretes produced with recycled aggregate at different aggregate-to-cement ratio

  • Briar K. Esmail;Najmadeen M. Saeed;Soran R. Manguri;Mustafa Gunal
    • Advances in concrete construction
    • /
    • v.17 no.1
    • /
    • pp.13-26
    • /
    • 2024
  • Due to its capacity to address urgent environmental challenges connected to urbanization and stormwater management, pervious concrete, a sustainable and innovative material, has attracted a lot of attention recently. The aim of this study was to find the engineering characteristics of pervious concrete made from recycled aggregate (RA) at various aggregate-to-cement ratios (A/C) and the addition of 5% (by weight of total aggregate) of both natural and recycled fine aggregate to produce a very sustainable concrete product for a variety of applications. The three distinct aggregate-to-cement ratios, 6, 5, and 4, were used to produce pervious concrete using recycled aggregate in the research approach. The ratio of water to cement (w/c) was maintained at 0.3. Pervious concrete was created using single-sized recycled aggregate that passed through a 12.5 mm sieve and was held on a 9.5 mm sieve, as well as natural and recycled sand that passed through a 4 mm sieve. The production of twelve distinct concrete mixtures resulted in the testing of each concrete sample for dry density, abrasion resistance, compressive and splitting tensile strengths, porosity, and water permeability. A statistical method called GLM-ANOVA was also used to assess the characteristics of pervious concrete made using recycled aggregate. According to the experimental results, lowering the aggregate-to-cement ratio enhances the pervious concrete's overall performance. Additionally, a modest amount of fine aggregate boosts mechanical strength while lowering void content and water permeability. However, it was noted that such concretes' mechanical qualities were adversely affected to some extent. The results of this study offer insight into the viability of using recycled aggregates in order to achieve both structural integrity and environmental friendliness, which helps to optimize pervious concrete compositions.

Behavior of Eutectic Si and Mechanical Properties of Sr Modified Al-7Si-0.35Mg alloy with Solid Solution Treatment for Sand Casting (Sr 개량처리된 사형주조 Al-7Si-0.35Mg 합금의 열처리에 따른 공정 Si상 변화거동 및 특성평가)

  • Kim, Myoung-Gyun;Hwang, Seok-Min
    • Journal of Korea Foundry Society
    • /
    • v.38 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • In this study, we focused on the correlation between the solidification structure, heat treatment and mechanical properties of the A356 alloy according to the conditions of Sr modification. The microstructural evolution of the eutectic Si and ${\alpha}-Al$ phase in the A356 alloy castings depending on the amount of Sr were investigated during solid solution heat treatment using an optical microscope, a scanning electron microscope and an image analyzer. In addition, tensile tests on the heat treated materials examined the relationship between the microstructure and the fracture surface. The as-cast A356 alloys under 40 ppm Sr showed an undermodified microstructure, but that of the added 60-80 ppm Sr had well modified structure of fine fibrous silicon. After solid solution treatment, the microstructure of the undermodified A356 alloy exhibited a partially spheroidized morphology, but the remainder showed the fragmentation of fibrous shaped silicon. The spheroidization of the eutectic silicon in the modified A356 alloys was completed during heat treatment, which was very effective in increasing the elongation. This is supported by the fracture surface in the tensile test.

Geotechnical Considerations in Tripoli Sub-region, Libya (리비아 트리폴리 지역에서의 지반공학적 고찰)

  • 강병무
    • The Journal of Engineering Geology
    • /
    • v.1 no.1
    • /
    • pp.2-10
    • /
    • 1991
  • Some geotechnical considerations might be suggested to the construction performance from the school and the housing projects in Tripoli sub-region, Libya. The subsurface informations were compiled from the site investigation reports, for which more than 700 borings and lots of laboratory test had been conducted from 1984 to 1986. Most subsurface of 10 meter depth in the Jafara plain consists of medium dense silty sand. Some ground in the plain have poor top soil with interbedded calcarenite or limestone. The shallow subsurface is found to be very poor soil in the southern mountain range. Weak soil is hardly found except in the sabkha area. In general, natural silty sand layer may have a presumed bearing capacity of more than 150kN/$m^2$, where spread or strip footing is applied. Proper fine aggregate and natural coarse one are restricted in Tripoli sub-region. Coarse aggregate is generally supplied from the dolomite quarry.

  • PDF

The Influence of Fine Particles under 0.08 mm Contained in Aggregate on the Characteristics of Concrete (골재 중 0.08 mm 이하 미립분의 종류가 콘크리트의 특성에 미치는 영향)

  • Song, Jin-Woo;Choi, Jae-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.3
    • /
    • pp.347-354
    • /
    • 2013
  • Recently, crushed fine aggregates are being widely used due to the shortage of natural sand. In Korea, the amount of fine particles under 0.08 mm contained in crushed fine aggregates is restricted to be less than 7%, which is similar to the regulations of ASTM but is still very strict compared to the regulations of the other nations. In addition, the crushed aggregates already have in them about 20% of fine particles under 0.08 mm which occurs while they are crushed. The fine particles are not easy to wash out, and also to maximize the use of resources it is deemed necessary to review the possibility of enhancing the limit of the amount of fine particles. Therefore, this study conducted experiments to analyze the characteristics of fine particles under 0.08mm and their influence on the properties of concrete. Experiments using silt and cohesive soil were also done for comparison. In the experiments on fine particles, the methylene blue value was more in the soil dust contained in silt and cohesive soil than in the stone powder contained in crushed fine aggregates. Also, the methylene blue value had a close correlation with packing density and liquid & plastic limit. In the experiments done with concrete, the quantity of high range water reducing agent demanded to obtain the same slump increased as the fine particle substitution rate heightened. However, in the experiment which used stone powder testing the compressive strength and tensile strength of concrete in the same water-cement ratio, there was little change in strength with less than 20% addition of fine particles among the fine aggregates, and no meaningful difference in the amount of drying shrinkage of concrete.

An Ecological Study on the Sand Dollar, Astriclypeus manni (VERRIL 1867), in Hamdock, Cheju Korea (제주도 함덕 연안에 서식하는 구멍연잎성게, Astriclypeus manni (VERRIL 1867)의 생태학적 특성에 관한 연구)

  • KANG DO-Hyung;CHOI Kwang-Sik;CHUNG Sang-Chul
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.3
    • /
    • pp.345-352
    • /
    • 1999
  • The sand dollar, Astriclypeus manni is commonly encountered on a subtidal sand bottom along the coast of Cheju Island. limited information has been reported on their ecology despite their natural abundance. This study reports ecology and an annual reproductive cycle of the sand dollars present at Hamdock, northern coast of Cheju Island. A. manni collected from Hamdock revealed that they are 80 to 200 mm in test diameter. Sediment Brain size analysis indicated that A. manni mostly occurs on medium (particle diameter of 500 $\mu$m) to very find sand (particle diameter of 125 $\mu$m), particularly on fine sand (particle diameter of 250 $\mu$m). Internal morphology and in situ observations on their feeding habit indicated that A. manni is a deposit feeder, feeding on organic debris contained in the sediment around its habitat. A. manni were more frequently observed near Zostrea marina bed where content of organic matter in the sediment is considered to be higher. Gonadal tissues of the male were yellow in color while female gonads appeared to be purple. Fully mature eggs, with a mean diameter of 381 $\mu$m, and sperm were observed from the histological slides of the sand dollars collected in late July to August, suggesting that A. manni spawn during July to August when water temperature reaches 20 to $25^{\circ}C$.

  • PDF

A Study on Effect of Earth Pressure Reduction and the Silo Earth Pressure of the Retaining Wall by CLSM Backfill with Waste Foundry Sand (폐주물사를 이용한 유동성 채움재의 절토구간 옹벽 뒤채움시 사일로토압 및 토압경감효과 연구)

  • Cho, Jae-Yun;Lee, Kwan-Ho;Cho, Yoon-Ho
    • International Journal of Highway Engineering
    • /
    • v.4 no.2 s.12
    • /
    • pp.19-31
    • /
    • 2002
  • The recycling of waste foundry sand(WFS) and fly ash as by-products of industry is one of the urgent problem to deal with. For the recycling of these materials, CLSM(controlled low strength materials) concept was adopted. This research has been done for last three years. In this research, couple of selected waste foundry sand and fly ash were used as fine aggregate. Also, WFS modified by Proper chemical liquid was used for the comparison. The main focus is to evaluate the silo earth pressure and the reduction effect due to the use of CLSM instead of normal fine aggregate. Silo effect, which occurs at short distance between retaining wall and backfill, was not detected because the characterization of CLSM is highly different from that of normal aggregate. Therefore, the theory for earth pressure, like Rankine theory or Coulomb theory, should be carefully used for CLSM. The reduction of earth pressure for modified WFS is higher than the others. But, the final earth pressure is converged at very small value, even though the reduction effect depends on the curing time.

  • PDF

Influence of palm oil fuel ash on behaviour of green high-performance fine-grained cement mortar

  • Sagr, Salem Giuma Ibrahim;Johari, M.A. Megat;Mijarsh, M.J.A.
    • Advances in materials Research
    • /
    • v.11 no.2
    • /
    • pp.121-146
    • /
    • 2022
  • In the recent years, the use of agricultural waste in green cement mortar and concrete production has attracted considerable attention because of potential saving in the large areas of landfills and potential enhancement on the performance of mortar. In this research, microparticles of palm oil fuel ash (POFA) obtained from a multistage thermal and mechanical treatment processes of raw POFA originating from palm oil mill was utilized as a pozzolanic material to produce high-performance cement mortar (HPCM). POFA was used as a partial replacement material to ordinary Portland cement (OPC) at replacement levels of 0, 5, 10, 15, 20, 25, 30, 35, 40% by volume. Sand with particle size smaller than 300 ㎛ was used to enhance the performance of the HPCM. The HPCM mixes were tested for workability, compressive strength, ultrasonic pulse velocity (UPV), porosity and absorption. The results portray that the incorporation of micro POFA in HPCMs led to a slight reduction in the compressive strength. At 40% replacement level, the compressive strength was 87.4 MPa at 28 days which is suitable for many high strength applications. Although adding POFA to the cement mixtures harmed the absorption and porosity, those properties were very low at 3.4% and 11.5% respectively at a 40% POFA replacement ratio and after 28 days of curing. The HPCM mixtures containing POFA exhibited greater increase in strength and UPV as well as greater reduction in absorption and porosity than the control OPC mortar from 7 to 28 days of curing age, as a result of the pozzolanic reaction of POFA. Micro POFA with finely graded sand resulted in a dense and high strength cement mortar due to the pozzolanic reaction and increased packing effect. Therefore, it is demonstrated that the POFA could be used with high replacement ratios as a pozzolanic material to produce HPCM.

Utilization of carrageenan as an alternative eco-biopolymer for improving the strength of liquefiable soil

  • Regina A. Zulfikar;Hideaki Yasuhara;Naoki Kinoshita;Heriansyah Putra
    • Geomechanics and Engineering
    • /
    • v.33 no.2
    • /
    • pp.221-230
    • /
    • 2023
  • The liquefaction of soil occurs when a soil loses strength and stiffness because of applied stress, such as an earthquake or other changes in stress conditions that result in a loss of cohesion. Hence, a method for improving the strength of liquefiable soil needs to be developed. Many techniques have been presented for their possible applications to mitigate liquefiable soil. Recently, alternative methods using biopolymers (such as xanthan gum, guar gum, and gellan gum), nontraditional additives, have been introduced to stabilize fine-grained soils. However, no studies have been done on the use of carrageenan as a biopolymer for soil improvement. Due to of its rheological and chemical structure, carrageenan may have the potential for use as a biopolymer for soil improvement. This research aims to investigate the effect of adding carrageenan on the soil strength of treated liquefiable soil. The biopolymers used for comparison are carrageenan (as a novel biopolymer), xanthan gum, and guar gum. Then, sand samples were made in cylindrical molds (5 cm × 10 cm) by the dry mixing method. The amount of each biopolymer was 1%, 3%, and 5% of the total sample volume with a moisture content of 20%, and the samples were cured for seven days. In terms of observing the effect of temperature on the carrageenan-treated soil, several samples were prepared with dry sand that was heated in an oven at various temperatures (i.e., 20℃ to 75℃) before mixing. The samples were tested with the direct shear test, UCS test, and SEM test. It can increase the cohesion value of liquefiable soil by 22% to 60% compared to untreated soil. It also made the characteristics of the liquefiable increase by 60% to 92% from very loose sandy soil (i.e., ϕ=29°) to very dense sandy soil. Carrageenan was also shown to have a significant effect on the compressive strength and to exceed the liquefaction limit. Based on the results, carrageenan was found to have the potential for use as an alternative biopolymer.

A Study on Characteristics of Early Age Pore-structure and Carbonation of Ground Granulated Blast Furnace Slag Concrete (고로슬래그미분말 콘크리트의 초기재령특성과 중성화에 관한 연구)

  • 변근주;박성준;하주형;송하원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.107-110
    • /
    • 1999
  • The objective of this study is to obtain characteristics of early age pore-structure and carbonation of concrete using ground granulated blast furnace slag (GGBFS). The durability of GGBFS concrete should be evaluated for wide use of the GGBFS. As for that evaluation, an analysis on early age pore-structure characteristics of GGBFS concrete are very important, Carbonation depths of GGBFS concrete, which are known to be larger than that of OPC, are different according to replacement ratios and fineness of slag. Because sea sand as fine aggregate is much used recently, it is also necessary to analyze characteristics of carbonation of GGBFS concrete. In this study, The micro-pore structure formation characteristics of GGBFS concrete are obtained through the test of GGBFS mortars with different fineness and replacement ratio of GGBFS. The carbonation of GGBFS concrete is also investigated by acclerated carbonation test for early age GGBFS concrete.

  • PDF

A study on the Stability of Rail way Construction on the Reclaimed Land for Domestic Marine Clay Using the Seismic Analysic (연약지반상 지진하중을 고려한 철도노반의 안정성 검토에 관한 연구)

  • Kim Young-Soo;Kim Moo-Ill
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1071-1076
    • /
    • 2004
  • The purpose. in this study. is to analyze liquefaction potential of Inchon International Airport at the Area Phase ' I ' for Railway Construction of all, seismic response was analyzed using the computer program, Shake91. Four methods proposed by Seed & Idriss. Eurocode, Iwasaki & Tatsuoka. and Ishihara were used for assessment of liquefaction potential and safety factors calculated form these methods are compared. Based on the results of seismic response analysis, the maximum acceleration at the ground surface is larger than that evaluated site factor effect by using site factor because these areas are composed of very loose sand clay. Especially, in the case of analysis with long period earthquake data. it is appeared that the acceleration of earthquake is amplified more largely. Therefore, accurate seismic response analysis is suggested for the design on the important structures on reclaimed land. The analytical results of liquefaction potential show that the increments of N-value and effective overburden pressure with remediation make safety factors increase. Through comparing the safety factors evaluated from four method, the safety factor calculated by See & Idriss method in the lowest one and it is found that the SPT N-value effect the safety factor very largely. And, Iwasaki & Tatsuoka method is affected by various factors such as average grain size. fine contents, confining pressure. In conclusion. to minimize earthquake Risk by liquefaction, the efficient remediation is essential and seismic response analysis should be carride out.

  • PDF