• Title/Summary/Keyword: Vertical-axis turbine

Search Result 140, Processing Time 0.03 seconds

Seismic Qualification Analysis of a Vertical-Axis Wind Turbine (소형 수직축 풍력발전기의 내진검증 해석)

  • Choi, Young-Hyu;Hong, Min-Gi
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.3
    • /
    • pp.21-27
    • /
    • 2016
  • The static and dynamic structural integrity qualification was performed through the seismic analysis of a small-size Savonius-type vertical wind turbine at dead weight plus wind load and seismic loads. The ANSYS finite element program was used to develop the FEM model of the wind turbine and to accomplish static, modal, and dynamic frequency response analyses. The stress of the wind turbine structure for each wind load and dead weight was calculated and combined by taking the square root of the sum of the squares (SRSS) to obtain static stresses. Seismic response spectrum analysis was also carried out in the horizontal (X and Y) and vertical (Z) directions to determine the response stress distribution for the required response spectrum (RRS) at safe-shutdown earthquake with a 5% damping (SSE-5%) condition. The stress resulting from the seismic analysis in each of the three directions was combined with the SRSS to yield dynamic stresses. These static and dynamic stresses were summed by using the same SRSS. Finally, this total stress was compared with the allowable stress design, which was calculated based on the requirements of the KBC 2009, KS C IEC 61400-1, and KS C IEC 61400-2 codes.

Chaotic vibration characteristics of Vertical Axis Wind Turbine (VAWT) shaft system

  • C.B. Maheswaran;R. Gopal;V.K. Chandrasekar;S. Nadaraja Pillai
    • Wind and Structures
    • /
    • v.36 no.3
    • /
    • pp.215-220
    • /
    • 2023
  • We study the progressive full-scale wind tunnel tests on a high solidity vertical axis wind turbine (VAWT) for various tip speeds and pitch angles to understand the VAWT shaft system's dynamics using 0-1 Test for chaos. We identify that while varying rotor speed (tip speed) of the turbine, the system's dynamics change from periodic to chaotic through quasiperiodic and strange non-chaotic (SNA) states. The present study is the first experimental evidence for the existence of these states in the VAWT shaft system to the best of our knowledge. Using the asymptotic growth value Kc in 0-1 test, when the turbine operates at the low tip speeds and high pitch angles for low incoming wind speeds, the system behaves periodic (Kc ≈ 0). However, when the incoming wind speed increases further the system's dynamics shift from periodic to chaotic vibrations through quasi-periodic and SNA. This phenomenon is due to the dynamic stalling of blades which induces chaotic vibration in the VAWT shaft system. Further, the singular continuous spectrum method validates the presence of SNA and differentiates the SNA from chaotic vibrations.

A Study of 50kW Wind Turbine by Using ANSYS Program (ANSYS 프로그램을 이용한 50kW급 풍력터빈에 관한 연구)

  • Lee, Dal-Ho;Park, Jung-Cheul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.3
    • /
    • pp.198-204
    • /
    • 2022
  • In this paper, the 5kW and 50kW vertical axis wind turbines were studied using the ANSYS flow analysis simulation program. The 5 kW vertical shaft wind turbine has 30 units of the number of main blades and sub-blades and the electrical characteristics were analyzed by changing the tip speed ratio (TSR) from 0.2 to 06. A 50kW vertical axis wind turbine was designed based on the electrical characteristics of a 5kW vertical axis wind turbine. When the tip speed ratio was 0.5, the 5 kW wind power generation showed the maximum output of 9.5 kW and the efficiency of 0.28. The calculation of the power current(Ip) and the power voltage(Ep) show that, as the tip speed ratio increases, the power current(Ip) decreases and the power voltage(Ep) increases. And even if the tip speed ratio was changed, 5kW wind power generation was measured for output of 5 kW or higher. When the tip speed ratio was changed from 0.3 to 0.6, 50 kW wind power generation was output more than 50 kW. When the tip speed ratio of 50kW wind power generation was 0.4, the output was 58.37 [kW] and the efficiency was 0.318, and it was confirmed that the proposed 50kW wind power generation satisfies the design conditions.

Experimental study on the performance of urban small vertical wind turbine with different types (도시형 소형 수직축 풍력 발전기의 형태별 성능에 대한 실험적 고찰)

  • Kang, Deok-Hun;Shin, Won-Sik;Lee, Jang-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.6
    • /
    • pp.64-68
    • /
    • 2014
  • This paper is intended to provide experimental data for the design of the small VAWT(vertical axis wind turbine). Three types(lift, drag, and hybrid) of the blade of VAWT are tested with digital wind tunnel in this study. From the test, the relation of power coefficient and tip speed ratio for the blades are evaluated and compared each other depending on the blade type. Especially, the characteristics of hybrid blade which is shown to be expanded in the market without any logical data is proposed in the relation of power coefficient and tip speed ratio. It is shown that the hybrid blade can be used to make higher starting torque with trade off of degradation of power coefficient.

Development of Hydrodynamic Capacity Evaluation Method for a Vertical-Axis Tidal Stream Turbine (수직축 조류발전 터빈의 유체공학적 용량 산정기법 개발)

  • Lee, D.H;Hyun, B.S.;Lee, J.K.;Kim, M.C.;Rhee, S.H.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.2
    • /
    • pp.142-149
    • /
    • 2012
  • This study deals with the investigation of the scale effect for the vertical-axis tidal stream turbine by evaluating the hydrodynamic efficiency of turbine rotors of different diameters at different flow conditions. Numerical analyses are made for the turbine rotors with a same shape, but different sizes obtained using the diameter evaluation equation suggested in this paper. It is shown that the performance of turbine is clearly dependent upon the rotor size and inflow velocity, i.e. Reynolds number dependency of different-scaled turbines showing better efficiency with increasing Reynolds number. The sudden decrease of efficiency is also noticed around the transition region of Reynolds number. The hydrodynamic capacity evaluation method needed at initial stage of turbine design is suggested and exercised with some test cases. It is recommended that the method is expected to be useful for turbines with demanding powers between 10 kW and 300 kW.

Development of a Cross-flow Type Vertical Wind Power Generation System for Electric Energy Generation Using Convergent-Divergent Duct (축소-확대 유로에 적용한 횡류형 수직 풍력발전시스템의 개발)

  • Chung, Sang-Hoon;Chung, Kwang-Seop;Kim, Chul-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.8
    • /
    • pp.543-548
    • /
    • 2011
  • New concept of wind energy conversion system is proposed to increase the energy density at a given working space. The quality of wind for wind power generation is depend on its direction and speed. However, the quality is not good on land because wind direction is changeable all the time and the speed as well. The most popularly operated wind turbine system is an axial-flow free turbine. But its conversion efficiency is less than 30% and even less than 20% considering the operating time. In this research, a cross-flow type wind turbine system is proposed with a convergent-divergent duct system to accelerate the low speed wind at the inlet of the wind turbine. Inlet guide vane is also introduced to the wind turbine system to have continuous power generation under the change of wind direction. In here, the availability of wind energy generation is evaluated with the change of the size of the inlet guide vane and the optimum geometry of the turbine impeller blade was found for the innovative wind power generation system.

Optimum Design of a Wind Power Tower to Augment Performance of Vertical Axis Wind Turbine (수직축 풍력터빈 성능향상을 위한 풍력타워 최적설계에 관한 연구)

  • Cho, Soo-Yong;Rim, Chae Hwan;Cho, Chong-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.3
    • /
    • pp.177-186
    • /
    • 2019
  • Wind power tower has been used to augment the performance of VAWT (Vertical Axis Wind Turbine). However, inappropriately designed wind power tower could reduce the performance of VAWT. Hence, an optimization study was conducted on a wind power tower. Six design variables were selected, such as the outer radius and the inner radius of the guide wall, the adoption of the splitter, the inner radius of the splitter, the number of the guide wall and the circumferential angle. For the objective function, the periodic averaged torque obtained at the VAWT was selected. In the optimization, Design of Experiment (DOE), Genetic Algorithm (GA), and Artificial Neural Network (ANN) have been applied in order to avoid a localized optimized result. The ANN has been continuously improved after finishing the optimization process at each generation. The performance of the VAWT was improved more than twice when it operated within the optimized wind power tower compared to that obtained at a standalone.

Design of Horizontal Axis Tidal Current Power Turbine with Wake Analysis (수평축 조류발전 터빈 설계 및 후류 특성 분석)

  • Jo, Chul-Hee;Kim, Do-Youb;Lee, Kang-Hee;Rho, Yu-Ho;Kim, Kook-Hyun
    • New & Renewable Energy
    • /
    • v.7 no.3
    • /
    • pp.92-100
    • /
    • 2011
  • With the increased demand of clean energy and global warming measures, the renewable energy development has been increased recently. The TCP (Tidal Current Power) is one of the ocean renewable energy sources. Having the high tidal energy source in Korea, there are many potential TCP sites with strong current speed. The rotor, which initially converts the energy, is a very important component because it affects the efficiency of the entire system. The rotor performance is determined by various design parameters including number of blades, shape, sectional size, diameters and etc. However, the interactions between devices also contribute significantly to the energy production. The rotor performance considering the interaction needs to be investigated to predict the exact power in the farm. This paper introduces the optimum design of TCP turbine and the performance of devices considering the interference between rotors.

Study on Performance Variation According to the Arrangements of Adjacent Vertical-Axis Turbines for Tidal Current Energy Conversion (인접한 조류발전용 수직축 터빈의 배치방식에 따른 성능 변화)

  • Lee, Jeong-Ki;Hyun, Beom-Soo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.2
    • /
    • pp.151-158
    • /
    • 2016
  • Tidal farm is a multi-arrayed turbine system for utilizing tidal stream energy. For horizontal-axis turbine(HAT) system, it is recommended that each unit has to be deployed far apart in order to avoid hydrodynamic interference among turbines, as proposed by the European Marine Energy Centre(EMEC). But there is no rule for the arrangement of vertical-axis turbine(VAT) yet. Moreover it has been reported that a proper arrangement of adjacent turbines can enhance the overall efficiency even greater than an arrangement without mutual interference effect. This paper suggests the layout of VATs showing the better performances, which turned out to be quite different from HATs' arrangement. Numerical calculations were performed to investigate the performance variation in terms of the rotational direction as well as the distance between turbines. It has been shown that the best combination of rotational direction and distance between turbines can increase its performance higher about 9.2% than that of two independently operated turbines. It is likely that such improvement is due to the increased velocity between adjacent turbines. For diagonally arranged turbines, the maximum normalized mean power coefficient was obtained to be higher about 5.6% than that of two independent turbines. It is expected that the present results can be utilized for conceptual design of tidal farm to harness the tidal stream energy.

Comparison of Aerodynamic Loads for Horizontal Axis Wind Turbine (II): with and without Vertical Wind Shear Effect (수평축 풍력터빈의 공력 하중 비교 (II): 수직 전단흐름 효과의 유·무)

  • Kim, Jin;Kang, Seung-Hee;Ryu, Ki-Wahn
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.5
    • /
    • pp.399-406
    • /
    • 2016
  • The large scale wind turbine blades usually experience periodic change of inflow speed due to blade rotation inside the ground shear flow region. Because of the vertical wind shear, the inflow velocity in the boundary layer region is maximum at uppermost position and minimum at lowermost position. These spatial distribution of wind speeds can lead to the periodic oscillation of the 6-component loads at hub and low speed shaft of the wind turbine rotor. In this study we compare the aerodynamic loads between two inflow conditions, i.e, uniform flow (no vertical wind shear effect) and normal wind profile. From the computed results all of the relative errors for oscillating amplitudes increased due to the ground shear flow effect. Especially bending moment and thrust at hub, and bending moments at LSS increased enormously. It turns out that the aerodynamic analysis including the ground shear flow effect must be considered for fatigue analysis.