• Title/Summary/Keyword: Vertical temperature difference

Search Result 261, Processing Time 0.079 seconds

Indoor Temperature Analysis by Point According to Facility Operation of IoT-based Vertical Smart Farm (IoT 기반 수직형 스마트 팜의 설비운영에 따른 지점별 실내온도분석)

  • Kim, Handon;Jung, Mincheol;Oh, Donggeun;Cho, Hyunsang;Choi, Seun;Jang, Hyounseung;Kim, Jimin
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.1
    • /
    • pp.98-105
    • /
    • 2022
  • It is essential for vertical smart farms that artificially grow crops in an enclosed space to properly utilize air environment facilities to create an appropriate growth environment. However, domestic vertical smart farm companies are creating a growing environment by relying on empirical data rather than systematic methods. Using IoT to create a growing environment based on systematic and precise monitoring can increase crop production yield and maximize profitability. This study aims to construct a monitoring system using IoT and to analyze the cause by demonstrating the imbalance of temperature environment, which is a significant factor in crop cultivation. 1) The horizontal temperature distribution of the multi-layer shelf was measured with different operating methods of LED and air conditioner. As a result, there was a temperature difference of "up to 1.7℃" between the sensors. 2) As a result of measuring the vertical temperature distribution, the temperature difference was "up to 6.3℃". In order to reduce this temperature gap, a strategy for proper arrangement and operation of air conditioning equipment is required.

Improvement of Thermal Enviromental by Two Air Out in Hot Air Heating (이중 취출구에 의한 온풍난방시의 열환경 개선)

  • Jang, In-Seong;Kim, J.S
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.33 no.3
    • /
    • pp.209-217
    • /
    • 1997
  • The objective of this paper is to improve a discomfort caused by the unequal airflow and vertical temperature difference by buoyancy of the supplied hot air in the conventional hot air heating system. In order to the model experiment we manufactured the hot air heater with two air outlet and a model room. We observed the temperature, velocity and airflow distribution and calculated values of PMV and PPD using mean value of central verticality section's air temperature and velocity. We could improve distribution of vertical temperature and velocity at the central section of the model room owing to correlation of hot air of two air outlet.

  • PDF

A Calculation Method on Heat Flux from Ondol Floor Surface (온돌면(溫突面)의 방열량(放熱量) 산정방법(算定方法)에 관한 연구(硏究))

  • Sohn, Jang Yeul;Ahn, Byung Wook;Pang, Seung Ki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.1 no.2
    • /
    • pp.173-181
    • /
    • 1989
  • Until recently there was a lack of reliable performance data for the design and operation of Ondol heating systems. This paper presents a calculation method on heat flux from Ondol floor surface. Total heat flux from floor consists of radiation and convection component. In order to analyse the characteristics of both radiation and convection heat flux, each surface temperature is measured and several temperatures near each wall are measured vertically and horizontally in a practical Ondol heating space. Radiation heat flux is calculated and analysed by Gebhart's Absorption Factor Method with the consideration of instantaneous radiant exchanges. Convection heat output is derived from the vertical temperature profiles near floor. The vertical temperature profiles could be expressed by nonlinear regression equation models and convection coefficients could be estimated by the equations. As a result, radiation, convection and total heat flux are suggested by the expression of difference between floor surface and room air temperature.

  • PDF

The Coupling of Conduction with Free Convection Flow Along a Vertical Flat Plate in Presence of Heat Generation

  • Taher, M.A.;Lee, Yeon-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.7
    • /
    • pp.833-841
    • /
    • 2007
  • The aim of this paper is to analyze the conjugate problems of heat conduction in solid walls coupled with laminar free convection flow adjacent to a vertical flat plate under boundary layer approximation. Using the similarity transformations the governing boundary layer equations for momentum and energy are reduced to a system of partial differential equations and then solved numerically using Finite Difference Method(FDM) known as the Keller-box scheme. Computed solutions to the governing equations are obtained for a wide range of non-dimensional parameters that are present in this problem, namely the coupling parameter P. the Prandtl number Pr and the heat generation parameter Q. The variations of the local heat transfer rate as well as the interface temperature and the friction along the plate and typical velocity and temperature profiles in the boundary layer are shown graphically. Numerical solutions have been consider for the Prandtl number Pr=0.70

Influence of Pyrolyzing Fuel Disposition on Combustion Phenomena in a Cylindrical Enclosure (원형공간내 열분해 연료의 공간배치가 연소현상에 미치는 영향)

  • Han, Cho-Young;Kim, Jeong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.680-685
    • /
    • 2000
  • Investigation on ignition and flame propagation of pyrolyzing fuel in a cylindrical enclosure is accomplished. The pyrolyzing fuel of cylindrical shape is located in an outer cylinder sustained at high-temperature. Due to gravity, the buoyancy motion is inevitably incurred in the enclosure and this affects the flame initiation and propagation behavior. The radiative heat transfer plays an important role since a high temperature difference is involved in the problem. Numerical studies have been performed over overheat ratio, and vertical fuel eccentricity. The location of flame onset is affected by the vertical eccentricity of inner pyrolyzing fuel as well as thermal conditions applied.

  • PDF

Numerical Analysis on Combined Convection for a Vertical Cocentric Cylinder with External Fins (외부로 휜이 있는 수직이중관내의 조합대류 유동에 관한 수치적 연구)

  • Sohn, Sang-Suk;Lee, Chae-Moon;Yim, Jang-Soon
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.14 no.2
    • /
    • pp.118-124
    • /
    • 1985
  • The motion of a fluid in the closed annular cavity formed by two concentric vertical cylinders with externally finned tube has been analysed by a numerical solutions of the equation of momentum and energy. For the calculation procedure, the fluid is assumed to have constant thermo-dynamic and transporties except for the density, which is temperature-dependent in the buoyancy term of the vertical momentum equation (Boussinesq approximation). The govern ins equations for velocity and temperature are solved by a finite difference technique which incoorporates a scheme for treating the coupled variables. Results are presented for a range of the Rayleigh number and for various values of the fin height and the number of fins.

  • PDF

A Performance Evaluation of a 400RT Vertical type Geothermal System installed in a R&D and Office Building in Spring (연구.사무공간의 냉난방용으로 설치된 400RT급 수직형 지열시스템의 봄철 성능평가)

  • Shin, Dong-Keol;Kim, Joong-Hun;Shin, Seung-Ho;Hwang, Kwang-Il
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.4 no.2
    • /
    • pp.9-14
    • /
    • 2008
  • 400RT geothermal system which is consist with vertical-typed 112 geothermal heat exchangers is measured and evaluated in spring, 21st${\sim}$24th May 2008. As the results, the average temperature difference between inlet and outlet of geothermal pipes is $1{\sim}2^{\circ}C$ and that of cool water supply is $2{\sim}6^{\circ}C$, when being normally operated. Despite temperature fluctuations by cooling loads, the average temperature difference between main pipes of inlet and outlet of geothermal heat exchangers is measured as $3^{\circ}C$. The geothermal system COPs are calcluated as 2.92${\sim}$3.92 in every 12 hours.

  • PDF

Vertical Temperature Difference of Steel Box Girder Bridge Considering Asphalt Thickness of Concrete Deck (콘크리트 바닥판의 아스팔트 두께에 따른 강박스거더교의 상하 온도차)

  • Lee, Seong-Haeng
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.602-608
    • /
    • 2019
  • The purpose of this study was to calculate the temperature difference of the sectional elevation according to the asphalt thickness of the steel box girder bridge deck and provide data on the design basis accordingly. Asphalt thicknesses produced four steel box girder model specimens of 0mm, 50mm, 100m and 150mm. In each model, 17 to 23 temperature sensors were attached to upper concrete and steel box girders. Six temperature gauges were selected to compare the temperature difference with Euro codes. The maximum and lowest temperature were calculated at the reference atmospheric temperature of each model, and the temperature difference (slope) was calculated based on this calculation. Four models of temperature difference are presented at each model. The 0mm to 100mm temperature difference models showed a -0.9 to -1.5 degree lower temperature difference compared to the temperature difference of Euro codes at the top of the slab. Overall, the measured temperature difference was found to be between 5.45% and 8.33% compared to the Euro code. The standard error coefficient, which was calculated by multiplying the average temperature with the standard error, was calculated from a range of 2.50 to 2.51 times the average at the top and bottom. It is estimated that the proposed temperature difference model can be used as a basic data when calculating temperature difference criteria for bridges in Korea.

A Study on the Vertical Temperature Difference of Steel Box Girder Bridge by Field Measurement (실측에 의한 강박스거더교의 상하 온도차에 대한 연구)

  • Lee, Seong-Haeng;Park, Young-Chun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.8
    • /
    • pp.545-551
    • /
    • 2018
  • For domestic application of the temperature gradient model proposed by foreign design standards, a specimen of steel box girder bridge was fabricated with the following dimensions: 2.0 m width, 2.0 m height and 3.0 m length. Temperature was measured using 24 temperature gauges during the summer of 2016. The reliability of the measured data was verified by comparing the measured air temperature with the ambient air temperature of the Korea Meteorological Administration. Of the measured gauges, four temperature gauges that can be compared with the temperature difference of the Euro code were selected and used to analyze the distribution of the measured temperatures at each point. The reference atmospheric temperature for the selection of the maximum temperature difference was determined by considering the standard error. Maximum and minimum temperatures were calculated from the four selected points and the resulting temperature difference was calculated. The model for the temperature difference in the steel box girder bridge was shown by graphing the temperature difference. Compared to the temperature distribution of the Euro code, the presented temperature difference model showed a temperature difference of $0.9^{\circ}C$ at the top and of $0.3^{\circ}$ to $0.4^{\circ}C$ at the intermediate part. These results suggested that the presented model could be considered relatively similar to the Euro code The calculated standard error coefficient was 2.71 to 2.84 times the standard error and represents a range of values. The proposed temperature difference model may be used to generate basic data for calculating the temperature difference in temperature load design.

Experimental Study on Heat Exchange Efficiency of Combined Well & Open-Closed Loops Geothermal System (지하수정호와 결합한 복합지열시스템의 열교환 효율에 대한 실험적 연구)

  • Song, Jae-Yong;Lee, Geun-Chun;Park, Namseo
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.5
    • /
    • pp.43-50
    • /
    • 2018
  • The temperature of underground water generally remains constant regardless of the season. therefore, it is possible to get plenty of energy if we use characteristics of underground water for both cooling and heating. This study evaluates efficiency of real size coaxial and U-tube type complex geothermal system which is combined with underground water well. This study also evaluates relative efficiency/adaptability through comparison with existing geothermal systems(vertical closed loop system, open loop system(SCW)). The heat exchange capacity of complex geothermal system according to temperature difference between circulating water and underground water shows very high significance by increasing proportionally. The temperature change of underground water according to injection energy, shows very high linear growth aspect as injection thermal volume heightens. As a result of evaluation of heat exchange volume between complex geothermal system and comparative geothermal system, coaxial type has 26.1 times greater efficiency than comparative vertical closed type and 2.8 times greater efficiency than SCW type. U-tube type has 26.5 tims greater efficiency than comparative vertical closed type and 2.8 times greater than SCW type as well. This means complex geothermal system has extremely outstanding performance.