• Title/Summary/Keyword: Vertical profile

Search Result 592, Processing Time 0.022 seconds

The Observation of Ozone Vertical Profile in Yongin, Korea During the GMAP 2021 Field Campaign (GMAP 2021 캠페인 기간 용인지역 오존 연직 분포 관측)

  • Ryu, Hosun;Koo, Ja-Ho;Kim, Hyeong-Gyu;Lee, Nahyun;Lee, Won-Jin;Kim, Joowan
    • Atmosphere
    • /
    • v.32 no.3
    • /
    • pp.247-261
    • /
    • 2022
  • The importance of ozone monitoring has been growing due to the polar ozone depletion and increasing tropospheric ozone concentration over many Asian countries, including South Korea. In-situ measurement of the vertical ozone structure has advantages for ozone research, but observations are not sufficient. In this study, ozonesonde measurements were performed from October to November in Yongin during the GMAP (The GEMS Map of Air Pollution) 2021 campaign. The procedure for ozonesonde preparation and initial analysis of the observed ozone profile are documented. The observed ozone concentrations are in good agreement with previous studies in the troposphere, and they capture the stratospheric ozone distribution as well, including stratosphere-troposphere exchange event. These balloon-borne in situ measurements can contribute to the evaluation of remote sensing measurements such as Geostationary Environment Monitoring Spectrometer (GEMS). This document focuses on providing essential information of ozonesonde preparation and measurement for domestic researchers.

Laminar Film Condensation Model of Pure Steam in a Vertical Tube (수직관 내 순수 증기의 층류 액막 응축 모델)

  • Kim, Dong Eok
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.3
    • /
    • pp.33-40
    • /
    • 2014
  • In this study, a new model for calculating the liquid film thickness and condensation heat transfer coefficient in a vertical condenser tube is proposed by considering the effects of gravity, liquid viscosity, and vapor flow in the core region of the flow. In order to introduce the radial velocity profile in the liquid film, the liquid film flow was regarded to be in Couette flow dragged by the interfacial velocity at the liquid-vapor interface. For the calculation of the interfacial velocity, an empirical power-law velocity profile had been introduced. The resulting liquid film thickness and heat transfer coefficient obtained from the proposed model were compared with the experimental data from other experimental study and the results obtained from the other condensation models. In conclusion, the proposed model physically explained the liquid film thinning effect by the vapor shear flow and predicted the condensation heat transfer coefficient from experiments reasonably well.

총의치 환자의 심미회복

  • Kim, Sungjin;Kang, Namgil
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.26 no.1
    • /
    • pp.39-51
    • /
    • 2017
  • In order to solve the problem of repositioning the old hader bar attachment and to restore the non-esthetic facial profile and improper occlusion of the edentulous patient due to inadequate jaw relation, determination of vertical dimension of occlusion and tooth arrangement were performed similar to the natural teeth before the teeth loss. In addition to improving the esthetics by restoring the inadequate facial appearance, the composite resin was used to maximize the patient's secondary esthetic satisfaction with the denture.

EXACT SOLUTION FOR STEADY PAINT FILM FLOW OF A PSEUDO PLASTIC FLUID DOWN A VERTICAL WALL BY GRAVITY

  • Alam, M.K.;Rahim, M.T.;Islam, S.;Siddiqui, A.M.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.16 no.3
    • /
    • pp.181-192
    • /
    • 2012
  • Here in this paper, the steady paint film flow on a vertical wall of a non-Newtonian pseudo plastic fluid for drainage problem has been investigated. The exact solution of the nonlinear problem is obtained for the velocity profile. Also the average velocity, volume flux, shear stress on the wall, force to hold the wall in position and normal stress difference have been derived. We retrieve Newtonian case, when material constant ${\mu}_1$ and relaxation time ${\lambda}_1$ equal zero. The results for co-rotational Maxwell fluid is also obtained by taking material constant ${\mu}_1$ = 0. The effect of the zero shear viscosity ${\eta}_0$, the material constant ${\mu}_1$, the relaxation time ${\lambda}_1$ and gravitational force on the velocity profile for drainage problem are discussed and plotted.

Delineation of Groundwater and Estimation of Seepage Velocity Using High-Resolution Distributed Fiber-Optic Sensor

  • Chang, Ki-Tae;Pham, Quy-Ngoc
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.6
    • /
    • pp.39-43
    • /
    • 2015
  • This study extends the Distributed Temperature Sensing (DTS) application to delineate the saturated zones in shallow sediment and evaluate the groundwater flow in both downward and upward directions. Dry, partially and fully saturated zones and water level in the subsurface can be recognized from this study. High resolution seepage velocity in vertical direction was estimated from the temperature data in the fully saturated zone. By a single profile, water level can be detected and seepage velocity in saturated zone can be estimated. Furthermore, thermal gradient analysis serves as a new technique to verify unsaturated and saturated zones in the subsurface. The vertical seepage velocity distribution in the recognized saturated zone is then analyzed with improvement of Bredehoeft and Papaopulos' model. This new approach provides promising potential in real-time monitoring of groundwater movement.

Derivation of aerosol vertical profiles in Seoul based on O4 measurements using UV scanning spectrometer

  • Lee, Hanlim;Hwang, JungBae;Son, Yoonhee
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.3
    • /
    • pp.325-329
    • /
    • 2013
  • This present study describes an application of UV scanning spectrometer $O_4$ data for retrieval of aerosol vertical profiles in Seoul during the measurement period that includes two Asian dust event days. The results show large variations of aerosol load in vertical and temporal scales. Large variations in aerosol were observed at 1 km in height during the daytime in the measurement period when the Asian dust events took place. The aerosol load, however, was found to be largest at the surface compared to those retrieved at the higher atmospheric layers. The results also clearly identified the diurnal patterns of aerosol vertical distributions. The aerosol load was high in the morning and noon whereas it was low in the afternoon. This study demonstrates that UV scanning spectrometer observations of the oxygen dimer can serve as a potential method for determination of atmospheric aerosol vertical distributions and optical properties.

Simulation for the effect of vertical groundwater flux on the subsurface temperature distribution

  • Shin Ji-Youn;Lee Kang-Kun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.383-386
    • /
    • 2006
  • Subsurface temperature is affected by heat advection due to groundwater advection. Temperature-depth profile can be perturbed especially when there are significant vertical groundwater flux caused by external force such as injection or extraction. This research is to clarify the change of subsurface temperature distribution when the 40m x l0m sandy aquifer is stimulated by two different vertical flux($case1:\;{\pm}10^{-5}m^3/s,\;case2:\;{\pm}4{\times}10^{-5}m^3/s$) using a program called HydroGeoSphere. The resulting temperature distribution contour map shows pumping causes vertical attraction of water from deeper and warmer place which result in rising up isotherm. Additionally more injection/extraction rate, more vertical groundwater flux leads to faster Increase in temperature near the pumping well.

  • PDF

Numerical Simulation of Vertical Wall fires II. Propane Fire (수직벽화재의 수치 시뮬레이션 II. 프로판 화재)

  • Park, Woe-Chul;Trouve, Arnaud
    • Fire Science and Engineering
    • /
    • v.22 no.3
    • /
    • pp.188-193
    • /
    • 2008
  • Numerical simulation was carried out for a propane fire of mass transfer rate 3g/m^2-s$ on a 1m high vertical wall. The objectives of this study are to confirm the outcomes of evaluation of the simulator through simulation of natural convection, and to compare the results of the wall fire with those of previous studies. It was confirmed that the simulated boundary layer was laminar at C_s=0.2$ while it was turbulent at C_s=0.1$. The z direction velocity showed lack of turbulent mixing as seen in the natural convection case, and the profiles of temperature and velocities were in relatively good agreement with those of experiment and previous simulation. It was found that the air entrainment into the boundary layer was well predicted.

Experimental Study for Influence of Summertime Heat Sources and Basic States on Rossby Wave Propagation (여름철 열원과 기본장이 로스비 파동전파에 미치는 영향에 대한 실험 연구)

  • Kim, Seong-Yeol;Ha, Kyung-Ja;Yun, Kyung-Sook
    • Atmosphere
    • /
    • v.20 no.4
    • /
    • pp.505-518
    • /
    • 2010
  • We investigated the impacts of the diabatic heating location, vertical profile and basic state on the Rossby wave propagation. To examine the dynamical process of individual responses on the regional heat source, a dry version of the linear baroclinic model was used with climatological summertime (JJA) mean basic state and vertical structure of the diabatic heating for 1979-2008. Two sets of diabatic heating were constructed of those positioned in the mid-latitudes (Tibetan Plateau, eastern Mediterranean Sea, and the west-central Asia) and the tropics (the southern India, Bay of Bengal, and western Pacific). It was found that using the principal component analysis, atmospheric response to diabatic heating reaches to the steady state in 19th days in time. The prescribed mid-latitude forcing forms equivalent barotropic Rossby wave propagation along the westerly Asia jets, whereas the tropical forcing generates the Rossby wave train extending from the tropics to mid-latitudes. In relation to the maximum vertical profile, the mid-level forcing reveals a stronger response than the lower-level forcing, which may be caused by more effective Rossby wave response by the upper-level divergent flow. Under the different sub-seasonal mean state, both of the tropical and mid-latitude forcing induce the different sub-seasonal response intensity, due to the different basic-state wind.

A CFD Study of Roadside Barrier Impact on the Dispersion of Road Air Pollution

  • Jeong, Sang Jin
    • Asian Journal of Atmospheric Environment
    • /
    • v.9 no.1
    • /
    • pp.22-30
    • /
    • 2015
  • This study evaluated road shape and roadside barrier impact on near-road air pollution dispersion using FLUENT computational fluid dynamics (CFD) model. Simulated road shapes are three types, namely at-grade, depressed, and filled road. The realizable k-${\varepsilon}$ model in FLUENT CFD code was used to simulate the flow and dispersion around road. The selected concentration profile results were compared with the wind tunnel experiments. The overall concentration profile results show good agreement with the wind tunnel results. The results showed that noise barriers, which positioned around the at-grade road, decrease the horizontal impact distance (In this study, the impact distance was defined as the distance from road surface origin coordinate to the position whose mass fraction is 0.1.) lower 0.33~0.65 times and change the vertical air pollution impact distance larger 2.0~2.27 times than those of no barrier case. In case of filled road, noise barriers decrease the horizontal impact distance lower 0.24~0.65 times and change the vertical air pollution impact distance larger 3.33~3.55 times than those of no barrier case. The depressed road increase 1.53~1.68 times the vertical air pollution impact distance. It contributes the decrease of horizontal air pollution impact distance 0.32~0.60 times compare with no barrier case.