DOI QR코드

DOI QR Code

GMAP 2021 캠페인 기간 용인지역 오존 연직 분포 관측

The Observation of Ozone Vertical Profile in Yongin, Korea During the GMAP 2021 Field Campaign

  • 류호선 (공주대학교 대기과학과) ;
  • 구자호 (연세대학교 대기과학과) ;
  • 김형규 (공주대학교 대기과학과) ;
  • 이나현 (연세대학교 대기과학과) ;
  • 이원진 (국립환경과학원 기후대기연구부 환경위성센터) ;
  • 김주완 (공주대학교 대기과학과)
  • Ryu, Hosun (Department of Atmospheric Science, Kongju National University) ;
  • Koo, Ja-Ho (Department of Atmospheric Sciences, Yonsei University) ;
  • Kim, Hyeong-Gyu (Department of Atmospheric Science, Kongju National University) ;
  • Lee, Nahyun (Department of Atmospheric Sciences, Yonsei University) ;
  • Lee, Won-Jin (Environmental Satellite Center, Climate and Air Quality Research Department, National Institute of Environmental Research (NIER)) ;
  • Kim, Joowan (Department of Atmospheric Science, Kongju National University)
  • 투고 : 2022.07.05
  • 심사 : 2022.08.09
  • 발행 : 2022.09.30

초록

The importance of ozone monitoring has been growing due to the polar ozone depletion and increasing tropospheric ozone concentration over many Asian countries, including South Korea. In-situ measurement of the vertical ozone structure has advantages for ozone research, but observations are not sufficient. In this study, ozonesonde measurements were performed from October to November in Yongin during the GMAP (The GEMS Map of Air Pollution) 2021 campaign. The procedure for ozonesonde preparation and initial analysis of the observed ozone profile are documented. The observed ozone concentrations are in good agreement with previous studies in the troposphere, and they capture the stratospheric ozone distribution as well, including stratosphere-troposphere exchange event. These balloon-borne in situ measurements can contribute to the evaluation of remote sensing measurements such as Geostationary Environment Monitoring Spectrometer (GEMS). This document focuses on providing essential information of ozonesonde preparation and measurement for domestic researchers.

키워드

과제정보

지상 오존 관측 자료 제공 및 원활한 관측이 이루어질 수 있도록 도움을 주신 한국외국어대학교 이태형 교수님과 연구원분들께 감사의 말씀을 드립니다. 본 연구는 환경부 국립환경과학원의 연구비(NIER2021-01-02-038) 및 2022년도 연세대학교 연구비(2021-22-0076)의 지원으로 수행되었습니다.

참고문헌

  1. Bak, J., K. H. Baek, J. H. Kim, X. Liu, J. Kim, and K. Chance, 2019: Cross-evaluation of GEMS tropospheric ozone retrieval performance using OMI data and the use of an ozonesonde dataset over East Asia for validation. Atmos. Meas. Tech., 12, 5201-5215, doi:10.5194/amt-12-5201-2019.
  2. Boxe, C. S., and Coauthors, 2010: Validation of northern latitude tropospheric emission spectrometer stare ozone profiles with ARC-IONS sondes during ARCTAS: sensitivity, bias and error analysis. Atmos. Chem. Phys., 10, 9901-9914, doi:10.5194/acp-10-9901-2010.
  3. Brewer, A. W., 1949: Evidence for a world circulation provided by the measurements of helium and water vapour distribution in the stratosphere. Quart. J. Roy. Meteor. Soc., 75, 351-363. https://doi.org/10.1002/qj.49707532603
  4. Brewer, A. W., and J. R. Milford, 1960: The oxford-kew ozone sonde. Proc. Roy. Soc. London. Series A. Mathematical and Physical Sciences, 256, 470-495.
  5. Butchart, N., 2014: The Brewer-Dobson circulation. Rev. Geophys., 52, 157-184, doi:10.1002/2013RG000448.
  6. Chipperfield, M., S. S. Dhomse, W. Feng, R. L. McKenzie, G. J. M. Velders, and J. A. Pyle, 2015: Quantifying the ozone and ultraviolet benefits already achieved by the montreal protocol. Nat. Commun., 6, 7233, doi:10.1038/ncomms8233.
  7. Crawford, J. H., and Coauthors, 2021: The Korea-United States Air Quality (KORUS-AQ) field study. Elem Sci. Anth., 9, 00163, doi:10.1525/elementa.2020.00163.
  8. Choi, W.-K., and H.-S. Kim, 2010: Annual variation and trends of the arctic tropopause pressure. Atmosphere, 20, 355-366 (in Korean with English abstract).
  9. Choi, Y., and Coauthors, 2021: Temporal and spatial variations of aerosol optical properties over the Korean peninsula during KORUS-AQ. Atmos. Environ., 254, 118301, doi:10.1016/j.atmosenv.2021.118301.
  10. Chong, H., and Coauthors, 2018: Regional characteristics of NO2 column densities from pandora observations during the MAPS-Seoul campaign. Aerosol Air Qual. Res., 18, 2207-2219, doi:10.4209/aaqr.2017.09.0341.
  11. Dobson, G. M. B., 1956: Origin and distribution of the polyatomic molecules in the atmosphere. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 236, 187-193.
  12. EN-SCI Corporation, 1996: Instruction Manual - Model 1Z ECC-O3 Sondes, Boulder, Colorado, 26.
  13. Flynn, L., and Coauthors, 2014: Performance of the ozone mapping and profiler suite (OMPS) products. J. Geophys. Res. Atmos., 119, 6181-6195, doi:10.1002/2013JD020467.
  14. GCOS AOPC-XIII, 2007: GCOS-GAW Agreement Establishing the WMO/GAW Global Atmospheric Ozone Monitoring Networks as Global Baseline Networks of GCOS. WMO, 114, 1-2.
  15. Hofmann, D. J., B. J. Johnson, and S. J. Oltmans, 2009: Twenty-two years of ozonesonde measurements at the South Pole. Int. J. Remote Sens., 30, 3995-4008. https://doi.org/10.1080/01431160902821932
  16. Holton, J. R., P. H., Haynes, M. E. McIntyre, A. R. Douglass, R. B. Rood, and L. Pfister, 1995: Stratosphere-troposphere exchange. Rev. Geophys., 33, 403-439. https://doi.org/10.1029/95RG02097
  17. Hwang, S. H., J. Kim, and G. R. Cho, 2007: Observation of secondary ozone peaks near the tropopause over the Korean peninsula associated with stratosphere-troposphere exchange. J. Geophys. Res. Atmos., 112, D16305. https://doi.org/10.1029/2006JD007978
  18. Kim, J.-H., and Coauthors, 2001: Study on the characteristics of tropospheric ozone in the Korea peninsula using Pohang ozonesonde data. Atmosphere, 11, 98-102 (in Korean with English abstract).
  19. Kim, J.-H., H.-J. Lee, and H.-S. Lee, 2003: Analysis of Korea tropospheric ozone structures with Pohang ozonesonde data. Atmosphere, 13, 304-307 (in Korean with English abstract).
  20. Kim, J.-Y., Y. H. Youn, K. B. Song, and K. H. Kim, 2000: Characteristics of vertical ozone distributions in the Pohang Area, Korea. J. Korean Earth Sci. Soc., 21, 287-301 (in Korean with English abstract).
  21. Kobayashi, J., and Y. Toyama, 1966: On various methods of measuring the vertical distribution of atmospheric ozone (III). Papers in Meteorology and Geophysics, 17, 113-125. https://doi.org/10.2467/mripapers1950.17.2_113
  22. Komhyr, W. D., 1969: Electrical concentration cells for gas analysis. Ann. Geophys., 25, 203-210.
  23. Levelt, P. F., E. Hilsenrath, G. W. Leppelmeier, G. H. J. van den Oord, P. K. Bhartia, J. Tamminen, J. F. de Haan, and J. P. Veefkind, 2006: Science objectives of the ozone monitoring instrument. IEEE Trans. Geosci. Remote Sens., 44, 1199-1208. https://doi.org/10.1109/TGRS.2006.872336
  24. Livesey, N. J., and Coauthors, 2015: EOS MLS Version 4.2 x Level 2 data quality and description document. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 15 [Available online at http://mls.jpl.nasa.gov/].
  25. Mills, G., and Coauthors, 2018: Tropospheric ozone assessment report: Present-day tropospheric ozone distribution and trends relevant to vegetation. Elem. Sci. Anth., 6, 47, doi:10.1525/elementa.302.
  26. Newman, P. A., and Coauthors, 2002: An overview of the SOLVE/THESEO 2000 campaign. J. Geophys. Res. Atmos., 107, SOL-1.
  27. Oh, J., S. W. Son, K. Williams, D. Walters, J. Kim, M. Willett, and J. Kim, 2018: Ozone sensitivity of tropical upper-troposphere and stratosphere temperature in the MetOffice Unified Model. Quart. J. Roy. Meteor. Soc., 144, 2001-2009. https://doi.org/10.1002/qj.3346
  28. Park, J.-K., S.-Y. Kim, and S.-W. Son, 2019: Evaluation of the troposphere ozone in the reanalysis datasets: comparison with pohang ozonesonde observation. Atmosphere, 29, 53-59, doi:10.14191/Atmos.2019.29.1.053 (in Korean with English abstract).
  29. Park, S.-S., J. Kim, N. Cho, Y. G. Lee, and H. K. Cho, 2011: The variations of stratospheric ozone over the Korean Peninsula 1985-2009. Atmosphere, 21, 349- 359, doi:10.14191/Atmos.2011.21.4.349 (in Korean with English abstract).
  30. Park, S.-S., J. Kim, H. K. Cho, H. Lee, Y. Lee, and K. Miyagawa, 2012: Sudden increase in the total ozone density due to secondary ozone peaks and its effect on total ozone trends over Korea. Atmos. Environ., 47, 226-235, doi:10.1016/j.atmosenv.2011.11.011.
  31. Park, S.-S., H. K. Cho, J. H. Koo, H. Lim, H. Lee, J. Kim, and Y. G. Lee, 2019: Monitoring and Long-term trend of total column ozone from dobson spectrophotometer in Seoul (1985-2017). Atmosphere, 29, 13-20, doi:10.14191/Atmos.2019.29.1.013 (in Korean with English abstract).
  32. Park, S., S. W. Son, M. I. Jung, J. Park, and S. S. Park, 2020: Evaluation of tropospheric ozone reanalyses with independent ozonesonde observations in East Asia. Geosci. Lett., 7, 1-12, doi:10.1186/s40562-020-00161-9.
  33. Randel, W. J., and E. J. Jensen, 2013: Physical processes in the tropical tropopause layer and their roles in a changing climate. Nature Geoscience, 6, 169-176, doi:10.1038/ngeo1733.
  34. Ryu, H., and J. Kim, 2020: Analysis of the ozone transport and seasonal variability in the tropical tropopause layer using MERRA-2 reanalysis data. Atmosphere, 30, 91-102, doi:10.14191/Atmos.2020.30.1.091 (in Korean with English abstract).
  35. Shin, D., S. Song, S. B. Ryoo, and S. S. Lee, 2020: Variations in ozone concentration over the mid-latitude region revealed by ozonesonde observations in Pohang, South Korea. Atmosphere, 11, 746, doi:10.3390/atmos11070746.
  36. Smit, H. G. J., and Coauthors, 2007: Assessment of the performance of ECC-ozonesondes under quasi-flight conditions in the environmental simulation chamber: Insights from the Juelich Ozone Sonde Intercomparison Experiment (JOSIE), J. Geophys. Res. Atmos., 112, D19306. https://doi.org/10.1029/2006JD007308
  37. Smit, H. G. J., and Panel for the Assessment of Standard Operating Procedures for Ozonesondes, 2014: Quality assurance and quality control for ozonesonde measurements in GAW, World Meteorological Organization, GAW Report# 201 [Available online at https://library.wmo.int/doc_num.php?explnum_id=7167].
  38. Stauffer, R. M., A. M. Thompson, and J. C. Witte, 2018: Characterizing global ozonesonde profile variability from surface to the UT/LS with a clustering technique and MERRA-2 reanalysis. J. Geophys. Res. Atmos., 123, 6213-6229, doi:10.1029/2018jd028465.
  39. Stohl, A., and Coauthors, 2003: Stratosphere-troposphere exchange: A review, and what we have learned from STACCATO. J. Geophys. Res. Atmos., 108, 8516, doi:10.1029/2002JD002490.
  40. Stolarski, R. S., D. W. Waugh, L. Wang, L. D. Oman, A. R. Douglass, and P. A. Newman, 2014: Seasonal variation of ozone in the tropical lower stratosphere: Southern tropics are different from northern tropics. J. Geophys. Res. Atmos., 119, 6196-6206, doi:10.1002/2013JD021294.
  41. Sullivan, J. T., and Coauthors, 2019: Taehwa research forest: a receptor site for severe domestic pollution events in Korea during 2016. Atmos. Chem. Phys., 19, 5051-5067, doi:10.5194/acp-19-5051-2019.
  42. Tarasick, D. W., and Coauthors, 2019: Quantifying stratosphere-troposphere transport of ozone using balloonborne ozonesondes, radar windprofilers and trajectory models. Atmos. Environ., 198, 496-509, doi: 10.1016/j.atmosenv.2018.10.040.
  43. Tarasick, D. W., and Coauthors, 2021: Improving ECC ozonesonde data quality: Assessment of current methods and outstanding issues. Earth Space Sci., 8, e2019EA000914, doi:10.1029/2019EA000914.
  44. Thompson, A. M., and Coauthors, 2017: First reprocessing of Southern Hemisphere Additional Ozonesondes (SHADOZ) ozone profiles (1998-2016): 2. Comparisons with satellites and ground-based instruments. J. Geophys. Res. Atmos., 122, 13000-13025, doi:10.1002/2017JD027406.
  45. Thompson, A. M., R. M. Stauffer, K. Wargan, J. C. Witte, D. E. Kollonige, and J. R. Ziemke, 2021: Regional and seasonal trends in tropical ozone from SHADOZ profiles: Reference for models and satellite products. J. Geophys. Res. Atmos., 126, e2021JD034691, doi:10.1029/2021JD034691.
  46. Wang, P., Y. Chen, J. Hu, H. Zhang, and Q. Ying, 2018: Attribution of tropospheric ozone to NO x and VOC emissions: considering ozone formation in the transition regime. Environ. Sci. Technol., 53, 1404-1412, doi:10.1021/acs.est.8b05981.
  47. WMO, 2008: Observing Systems. Part II, Guide to Meteorological Instruments and Methods of Observations, World Meteorological Organization, WMO-No. 8, 681 pp.
  48. Yeo, M. J., and Y. P. Kim, 2021: Long-term trends of surface ozone in Korea. J. Clean. Prod., 294, 125352, doi:10.1016/j.jclepro.2020.125352.
  49. Yoo, J. M., M. J. Jeong, D. Kim, W. R. Stockwell, J. H. Yang, H. W. Shin, M. I. Lee, C. K. Song, and S. D. Lee, 2015: Spatiotemporal variations of air pollutants (O 3, NO 2, SO 2, CO, PM 10, and VOCs) with landuse types. Atmos. Chem. Phys., 15, 10857-10885, doi:10.5194/acp-15-10857-2015.
  50. Zhang, Y., and Y. Wang, 2016: Climate-driven ground-level ozone extreme in the fall over the Southeast United States. Proc. Natl. Acad. Sci., 113, 10025-10030, doi:10.1073/pnas.1602563113.