• Title/Summary/Keyword: Vertical pipe

Search Result 319, Processing Time 0.025 seconds

Characteristics of Two-Phase Flow in Vertical Pipe (수직관에서의 이상유동 특성)

  • Bae, B.M.;Sim, W.G.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.879-882
    • /
    • 2004
  • Two-phase flow exists in many industrial components. Characteristics of two-phase flow have been studied by many researchers; however, a further study of the two-phase is required for flow-induced vibration. Characteristics of two-phase flow were measured by force sensor at the end of a vertical pipe. The predominant frequency of fluctuation was obtained for various speeds of flow pattern. A correlation to slug frequency for horizontal flow was obtained by Heywood & Richardson (1979), while Legius et al (1997) for vertical flow. A coefficient based on the correlation is estimated and then compared to the existing ones. The existing empirical formulations for average void fraction were proposed by Wallis (1969), Zuber et al (1967) and Ishii (1970). In the present result, flow parameters, such as flow quality and real velocity, are evaluated with void fraction.

  • PDF

Response of Soil Plug to Seaquake Induced by the Vertical Seismic Excitation (수직 지진 진동에 의해 유발된 해진에 대한 관내토의 거동)

  • 최용규
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.04a
    • /
    • pp.81-88
    • /
    • 1998
  • During an earthquake, there are three main components of excitation : horizontal excitation of the ground, vertical excitation of the pile due to superstructure feedback produced by vertical excitation of the ground, and the seawater excitation induced by the vertical ground shaking, that is, "the seaquake." These excitations could have effects on the soil plugs in open-ended pipe piles installed at offshore sites. In this study, seaquake excitation induced by the vertical ground shaking was simulated by pulsing the water pressure at the seabed. During a seaquake, due to induced excess porewater pressure and pressure gradients in the soil, the capacity of open-ended pipe piles installed in a simulated sea depth of greater than 220 m was reduced serevely and the soil plugging resistance was degraded by more than 80%. The soil plug was failed because of the upward seepage forces that developed in the soil plug due to excess pore water pressure produced in the bottom of the soil plug during the seaquake. The compressive capacity of an open-ended pile in a simulated sea depth of less than 220m was reduced only by about 10%, and the soil plug resistance was degraded by less than 5%.s than 5%.

  • PDF

Transient Forces on Pipe Bends by the Propagation of Pressure Wave

  • Woo, Hyo-Seop;Papadakis, C.N.;Kim, Won
    • Korean Journal of Hydrosciences
    • /
    • v.6
    • /
    • pp.99-105
    • /
    • 1995
  • External forecs acting on a pipe bend change when a transient pressure wave propagates through the bend. Analytical expressions are derived to compute the changes of these forces which depend mainly on static pressure rather than fluid momentum. This analysis reveals that the change of the vertical component of the force acting on a pipe bend with an angle larger than 90 may reverse in direction during the passage of a pressure wave through the bend.

  • PDF

Evaluation of performance of closed-loop vertical ground heat exchanger by In-situ thermal response test (현장 열응답 시험을 통한 수직 밀폐형 지중열교환기의 성능 평가)

  • Lee, Chul-Ho;Park, Moon-Seo;Kwak, Tae-Hoon;Choi, Hang-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.229-239
    • /
    • 2010
  • Performing a series of in-situ thermal response tests, the effective thermal conductivity of six vertical closed-loop ground heat exchangers was experimentally evaluated and compared each other, which were constructed in a test bed in Wonju. To compare thermal efficiency of the ground heat exchangers in field, the six boreholes were constructed with different construction conditions: grouting materials (cement vs. bentonite), different additives (silica sand vs. graphite) and the shape of pipe-sections (general U-loop type vs. 3 pipe-type). From the test results, it can be concluded that cement grouting has a higher effective thermal conductivity than that of bentonite grouting, and the efficiency of graphite better performs over silica sand as a thermally-enhancing addictive. In addition, a new 3 pipe-type heat exchanger provides less thermal interference between the inlet and outlet pipe than the conventional U-loop type heat exchanger, which results in superior thermal performance.

  • PDF

Effects of Attached Masses on the Instability and Vibration Suppression of a Flexible Pipe Conveying Fluid (유체유동에 의한 유연한 파이프의 불안정과 진동억제에 미치는 부가질량의 영향)

  • 류봉조;정승호;이종원
    • Journal of KSNVE
    • /
    • v.10 no.2
    • /
    • pp.280-290
    • /
    • 2000
  • The paper deals with vibration suppression and dynamic stability of a vertical cantilevered pipe conveying an internal flowing fluid and having an attached mass. Real pipe systems may have some valves or mechanical attached parts, which can be regarded as attached lumped masses. The effect of attached mass on the dynamic stability of a cantilevered pipe conveying fluid is investigated for different locations and magnitudes of the attached mass. The flow rate was controlled through motor pump output and measured by a flow meter. Experimental resutls in the vicinity of flutter fluid velocity were compared with theoretical predictions. It has been found that the experimental results are in substantial agreement with the theoretical predictions. Finally, in order to suppress the vibration of the pipe subjected to a disturbance, and control technique using an internal flowing fluid is introduced.

  • PDF

Development of Agricultural Hydraulic Structure for Water Collecting and Draining (집.배수용 농업수리시설물 개발)

  • 성찬용;연규석;류능환;김기성;민정기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.2
    • /
    • pp.105-111
    • /
    • 2001
  • This study is performed to develop an agricultural hydraulic structure for collecting and draining pipe using polymer concrete. The water permeability of collecting and draining pipe shows an 5.917$\ell$/$\textrm{cm}^2$/h, it is more 190 times as large as in the world maximum rainfall. The external pressure on the collecting and draining pipe is in the range of 1.85~5.25tf/m under 2-edge test, 2.6~6.2tf/m under sand mat and the vertical displacement is in the range of 0.48~1.06mm, 1.01~1.89mm, respectively. Also, an increasing rate of external pressure on the developed pipe is higher than that of PVC pipe to the variation of t/D. Accordingly, the pipe developed in this study will be used widely in agricultural hydraulic structures such as collecting and draining structure.

  • PDF

An Applicability Estimation of Plastic Vertical Pipes using Electric Fusion Fittings through Measurement (실측을 통한 융착식 플라스틱 입상배관 성능 평가)

  • Park, Yool;Ahn, Young-Chull;Kim, Hyun-Dae;Kim, Jeong-Su;Goark, You-Shik;Kim, Young-Kyoung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.11
    • /
    • pp.595-599
    • /
    • 2013
  • The pipes used in buildings are generally categorized into metallic or plastic materials. Metal pipes, such as copper and stainless steel pipes, are mainly used for water and hot water supply, and for the heating system. However, plastic pipes made of polyethylene and cross-linked polyethylene are used for floor heating, water drainage, and air vent systems. Usually, plastic pipes have thermal demerits, such as high linear expansion coefficients and bending phenomenon by hot water, although the pipes have several merits of light weight, low price, low thermal conductivity, and the comparatively high workability of metal pipes. Therefore, if those kind of demerits are overcome, plastic pipes can be easily accepted for hot water systems. This research is aimed to evaluate the applicability for vertical heating pipes of a plastic pipe system consisting of electric fusion fitting of a conductive carbon compound and propylene random glass fiber pipe, through measurement of the expansion rate and leakage in summer and winter seasons, in the apartment construction field.

Thermal Behavior of Vertical Ground Heat Exchanger by Numerical Simulation (수치해석을 통한 수직 밀폐형 지중열 교환기의 열전달 거동 연구)

  • Gil, Hu-Jeong;Lee, Chul-Ho;Kim, Ju-Young;Choi, Hang-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1638-1646
    • /
    • 2008
  • This paper presents a series of numerical simulations on the thermal performance and sectional efficiency of a closed-loop vertical ground heat exchanger (U-loop) equipped in a geothermal heat pump system (GHP). A 2-D finite element analysis, ANSYS, was employed to evaluate the temperature distribution on the borehole cross section involving HDPE pipe/grout/soil formation to compare the sectional efficiency between the conventional U-loop and a new latticed HDPE pipe system which is equipped with a thermally insulating latice in order to reduce thermal interference between the inflow and outflow pipes. In addition, a 3-D finite volume analysis (Fluent) was used to simulate the operating process of the closed-loop vertical ground heat exchanger by considering the effect of grout's thermal properties, rate of circulation pump, distance between the inflow and outflow pipes, and the effectiveness of the latticed HDPE pipe system. It was observed that the thermal interference between the two strands of U-loop is of importance in determining the efficiency of the ground heat exchanger, and thus it is highly recommendable to modify the cross section configuration of the conventional U-loop system by including a thermally insulating latice between the two strands.

  • PDF

Statistical Approach for Corrosion Prediction Under Fuzzy Soil Environment

  • Kim, Mincheol;Inakazu, Toyono;Koizumi, Akira;Koo, Jayong
    • Environmental Engineering Research
    • /
    • v.18 no.1
    • /
    • pp.37-43
    • /
    • 2013
  • Water distribution pipes installed underground have potential risks of pipe failure and burst. After years of use, pipe walls tend to be corroded due to aggressive soil environments where they are located. The present study aims to assess the degree of external corrosion of a distribution pipe network. In situ data obtained through test pit excavation and direct sampling are carefully collated and assessed. A statistical approach is useful to predict severity of pipe corrosion at present and in future. First, criteria functions defined by discriminant function analysis are formulated to judge whether the pipes are seriously corroded. Data utilized in the analyses are those related to soil property, i.e., soil resistivity, pH, water content, and chloride ion. Secondly, corrosion factors that significantly affect pipe wall pitting (vertical) and spread (horizontal) on the pipe surface are identified with a view to quantifying a degree of the pipe corrosion. Finally, a most reliable model represented in the form of a multiple regression equation is developed for this purpose. From these analyses, it can be concluded that our proposed model is effective to predict the severity and rate of pipe corrosion utilizing selected factors that reflect the fuzzy soil environment.