• Title/Summary/Keyword: Vertical gap

Search Result 295, Processing Time 0.025 seconds

Growth of ZnO thin films by MOCVD using the buffer layers grown at high temperature (고온 버퍼층을 이용한 ZnO 박막의 MOCVD 성장)

  • Kim, Dong-Chan;Kong, Bo-Hyun;Cho, Hyung-Koun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.108-109
    • /
    • 2006
  • ZnO semiconductor has a wide band gap of 3.37 eV and a large exciton binding energy of 60 meV, and displays excellent sensing and optical properties. In particular, ZnO based 1D nanowires and nanorods have received intensive attention because of their potential applications in various fields. We grew ZnO buffer layers prior to the growth of ZnO nanorods for the fabrication of the vertically well-aligned ZnO nanorods without any catalysts. The ZnO nanorods were grown on Si (111) substrates by vertical MOCVD. The ZnO buffer layers were grown with various thicknesses at $400^{\circ}C$ and their effect on the formation of ZnO nanorods at $300^{\circ}C$ was evaluated by FESEM, XRD, and PL. The synthesized ZnO nanorods on the ZnO film show a high quality, a large-scale uniformity, and a vertical alignment along the [0001]ZnO compared to those on the Si substrates showing the randomly inclined ZnO nanorods. For sample using ZnO buffer layer, 1D ZnO nanorods with diameters of 150-200 nm were successively fabricated at very low growth temperature, while for sample without ZnO buffer the ZnO films with rough surface were grown.

  • PDF

An Observation of Unified Force Expression in The Cylindrical Magnetic Material with a Vertical Current Running Through Its Center (전류가 관통하는 원통형 자성체에 미치는 전자기력식의 통일성에 대한 고찰)

  • Choi, Hong-Soon
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.5
    • /
    • pp.174-179
    • /
    • 2011
  • Magnetic force calculation methods such as Maxwell stress, virtual work principle, equivalent magnetic charge, and equivalent magnetizing current are widely used until now. The force density is still controversial issue even though it is common sense that all of these methods have legitimate results. The surface force densities of each method are quite different with each other in the point of numerical result and final expression. In this paper, it is shown that a unified expression of body force density is derived using virtual air-gap scheme for an analytic model in which cylindrical magnetic material with a vertical current runs through its center.

An Experimental Study on the Structural Performance of Openings at End Steel Beams (강재 단순보 단부에 근접한 개구부의 구조성능에 관한 실험적 연구)

  • Han, Dong-Ho;Yoon, Sung-Kee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.138-145
    • /
    • 2020
  • This study was conducted to identify the structural performance of the opening in a location close to the support point in the perforated beam system of steel beams. In addition, structural performance was determined through experiments on reinforced openings using vertical and horizontal steel plates. In the steel simple beam, it was found that the opening was in a position closer to the support point, half the height of the steel beam (D/2), which was more appropriate than the height of the steel beam (D). In addition, the reinforcement effect of horizontal steel plate was greater than that of vertical steel plate reinforcement. Structural performance was improved when there was no gap between openings and steel plates.

Axially-compressed behavior of CFRP strengthening steel short columns having defects

  • Omid Yousefi;Amin Shabani Ammari
    • Structural Engineering and Mechanics
    • /
    • v.91 no.1
    • /
    • pp.49-61
    • /
    • 2024
  • In recent decades, the majority of studies have concentrated on the utilization of Steel Square Hollow Section (SHS) columns, with minimal attention given to reinforcing columns exhibiting inherent defects. This study addresses this gap by introducing initial vertical and horizontal defects at three distinct locations (top, middle, and bottom) and employing Carbon-FRP for reinforcement. The research investigates the dimensional and positional impacts of these defects on the axial behavior of SHS columns. A total of 29 samples, comprising 17 with defects, 11 strengthened, and 1 defect-free control, underwent examination. The study employed ABAQUS modeling and conducted experimental testing. Results revealed that defects located at different positions significantly diminished the load-bearing capacity and initial performance of the steel columns. Axial loading induced local buckling and lateral rupture, particularly at the defect side, in short columns. Notably, horizontal (across the column's width) and vertical (along the column's height) defects in the middle led to the most substantial reduction in strength and load-bearing capacity. The axial compressive failure increased with the length-to-width ratio of the defect. Moreover, the application of four carbon fiber layers to strengthen the steel columns resulted in increased Energy Dissipation and a delayed onset of local buckling in the face of axial ruptures.

The prosthetic approach and principle for an collapsed VDO ; A clinical case of pseudo Class III patient (저위교합환자의 보철적 접근법과 이론 : Pseudo Class III 교합환자 증례)

  • Kwon, Kung-Rock;Choi, Dae-Gyun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.20 no.2
    • /
    • pp.121-134
    • /
    • 2004
  • This article describes a clinical protocol for the conventional rehabilitation of patient diagnosed with partial anodontia. A combined dental therapy approach was used and included endodontic therapy and root capping on the maxillary central incisors, fabrication of a maxillary overdenture, and fabrication of mandibular konus overdenture supported by 3 konus abutments. Within this protocol, tooth-supported overdenture prostheses are used for 2 purposes: first, to obtain the most rigid retention and function at an established maxillary-mandibular relationship; and second, to continuously maintain function and esthetic appearance applying immediate dentures after teeth extraction. The idea behind this protocol and its associated clinical procedures is presented along with a discussion compared with implant therapy. In the case introduced, and after 7 years of observation, the therapy can be seen as a success. We increased the occlusal vertical height in this case, but it would be more appropriate to see this as recovering the occlusal vertical height that was lost. The process of increasing the occlusal vertical height, that is restoration of the face, modification of the extrinsic occlusion of the incisors, and retraction of the mandible is very difficult and important. Ultimately, class III malocclusion is fixed, adequate occlusal vertical height is gained, and the retracted posterior anodontial portion is restored by prosthodontic dentures based on the rigid support theory. The result of the therapy done on the later-achieved malocclusion with partial anodontia on the posterior portion must consider the following in order to maintain the safety of the esthetics of the tooth and face for a period of time: 1) occlusal restoration with an ideal occlusal vertical height, 2) allowance of the final occlusion induced by the functional relationship of the upper and lower jaw, 3)final occlusion functionally induced by the lip competence limit.

Lateral Vibration Reduction of a Maglev Train Using U-shaped Electromagnets (U 자형 전자석을 사용하는 자기부상열차의 횡진동 저감 연구)

  • Han, Jong-Boo;Kim, Ki-Jung;Han, Hyung-Suk;Kim, Sung-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1447-1453
    • /
    • 2012
  • For an electromagnetic suspension (EMS)-type urban Maglev train using U-shaped electromagnets, both the vertical and the lateral air gaps for levitation are maintained only by the electromagnet. The train can run over curved rails without active lateral air gap control because the U-shaped electromagnet simultaneously produces both a levitation force and a guidance force, which is dependent on the levitation force. Owing to the passive control of the lateral air gap, the lateral vibration could exceed the limits of the lateral air gap and acceleration. In this study, dynamic analysis of a Maglev train is carried out, and the effectiveness of a lateral damper for vibration reduction is investigated. To more accurately predict the lateral vibration, a Maglev vehicle multibody model including air-sparing, guideway irregularities, electromagnets, and their controls is developed.

An Experimental study on the gap of movement by the hinge articulator (단순교합기에 의한 하악운동의 오차에 대한 실험적 연구)

  • Moon, Hee-Kyung
    • Journal of Technologic Dentistry
    • /
    • v.25 no.1
    • /
    • pp.111-118
    • /
    • 2003
  • I measured the movement range on the hinge articulator and the movement range in an oral. And then I studied to analyze the gap. I got wax records by the movement on the hinge articulator, the movement in an oral and the movement on the hand articulating. I measured the distance of the cusp tips that are close to the mesial direction and the distal direction, the buccal direction and the lingual direction then I compared gaps. As I saw results on data, I knew that the hinge articulator represented the range of mandibular movement restrictively. I could find the decisive contradiction that the sliding movement finished on the hinge articulator although it did not finish in an oral. If the sliding movement does not reappear exactly, it brings a fatal failure to the dental prosthesis. In addition it is impossible that the hinge articulator restores the movement in an oral because the lateral condyle inclination and the horizontal condyle inclination are fixed previously. Therefore dental prosthesisses were made by the hinge articulator, they will interfere with a mastication. I have obtained the following results; 1. The distance of sliding movement on the hinge articulator showed shorter than the distance of sliding movement in oral. This means the increase of cusp inclination of the dental prosthesis that was made on the hinge articulator. Therefore, when the lateral movement occurs in oral, there is a possibility to become the premature as the increase of cusp inclination. 2. The results that were impressed records in oral and impressed records on the hand articulating have many congruities. I think that the simple crown etc. that were made by the hand articulating method except the long span bridge and the free end case that can not measure the vertical dimension exactly can represent similarly the mandibular movement. 3. If we want to represent the mandibular movement similarly, we have to use the articulator that can adjust the horizontal condyle inclination and the lateral condyle inclination at least.

  • PDF

A Study on the Selection of Measuring Mode in the Permittivity Measurement Using a Circular Cylindrical Cavity (원통형 공진기를 이용한 유전율 측정방법에서 측정모드 선택에 관한 연구)

  • Lee, Won-Hui;Kang, Soon-Kuk;Choi, Hong-Ju;Hur, Jung;Lee, Sang-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.2
    • /
    • pp.218-226
    • /
    • 1999
  • This paper describes resonant mode selection with which the relative permittivity can be measured exactly. To measure the relative permittivity, a circular cylindrical cavity filled with dielectric material is used. When the circular cylindrical cavity is filled with the dielectric material, the air gap occurs on account of machining error. Accurate relative permittivity can be obtained by using less sensitive mode in resonant frequency variation by the air gap. As a result, Average 0.009% resonant frequency variation in the vertical and the radial direction appears at $TE_{011}$ mode. It is interesting that the frequency variation by the air gap at $TE_{011}$ mode turns out to be the least sensitive.

  • PDF

Development of Diagnosis System of Mold Oscillation in a Continuous Slab Casting Machine (연속 주조기의 주형 진동 진단 시스템의 개발)

  • Choi, Jae-Chan;Lee, Sung-Jin;Cho, Kang-Hyeong;Jun, Hyeong-Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.5
    • /
    • pp.84-94
    • /
    • 1996
  • In order to prevent shell sticking by providing sufficient lubrication between the strand and the mold, the mold oscillation has been used. Now it is well known that the shape of the oscillation curve has a decisive effect on the surface quality of the cast product. Besides, oscillation parameters such as stroke and frequency are also very important. In order to guarantee that parameters which have been found to be optimal for a certain grade of steel do not change with time, periodical checks of the physical condition of the whole equipment are necessary. The portable mold oscillation analyzer with integrated computer, developed by POSCO, records the movement of the mold in every spatial direction. The system uses the gap sensors to measure the mold movement (displacement ) in the two horizontal directions according to the mold narrow and broad faces and the vertical strokes in the four corners of mold. The gap sensor is a non-contacting minute displacement measuring device using the principle of high frequency eddy current loss. The mold oscillation diagnosis system integrates the gap sensors, their converters and the industrial portable computer with plug-in data acquisition boards. The all programs, such as the fast Fourier transformation module (amplitude and phase spectrums) and harmonic analysis module, was coded by LabVIEW$^{TM}$ software as the graphical language. In an own 'expert module' which is included in the diagnosis program, one can obtain much information about the mold oscillation equipment.

  • PDF

Finite Element Analysis on the Supporting Bone according to the Connection Condition of Implant Prosthesis (임플란트 보철물의 연결 여부에 따른 유한요소응력분석)

  • Kang, Jae-Seok;Jeung, Jei-Ok;Lee, Seung-Hoon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.23 no.1
    • /
    • pp.31-42
    • /
    • 2007
  • The purpose of this study was to compare the stress distribution according to the splinting condition and non-splinting conditions on the finite element models of the two units implant prostheses. The finite element model was designed with the parallel placement of two fixtures ($4.0mm{\times}11.5mm$) on the mandibular 1st and 2nd molars. A cemented abutment and gold screw were used for superstructures. A FEA models assumed a state of optimal osseointegration, as the bone quality, inner cancellous bone and outer 2 mm compact bone was designed. This concluded that the cortical and trabecular bone were assumed to be perfectly bonded to the implant. Splinting condition had 2 mm contact surface and non-splinting condition had $8{\mu}m$ gap between two implant prosthesis. Two group (Splinting and non-splinting) were loaded with 200 N magnitude in vertical axis direction and were divided with subdivision group. Subdivision group was composed of three loading point; Center of central fossa, the 2 mm and 4 mm buccal offset point from the central fossa. Von Mises stress value were recorded and compared in the fixture-bone interface and bucco-lingual sections. The results were as follows; 1. In the vertical loading condition of central fossa, splinting condition had shown a different von Mises stress pattern compared to the non-splinting condition, while the maximum von Mises stress was similar. 2. Stresses around abutment screw were more concentrated in the splinting condition than the non-splinting condition. As the distance from central fossa increased, the stress concentration increased around abutment screw. 3. The magnitude of the stress in the cortical bone, fixture, abutment and gold screw were greater with the 4 mm buccal offset loading of the vertical axis than with the central loading.