• Title/Summary/Keyword: Vertical compaction

Search Result 86, Processing Time 0.029 seconds

Behavior of dry medium and loose sand-foundation system acted upon by impact loads

  • Ali, Adnan F.;Fattah, Mohammed Y.;Ahmed, Balqees A.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.6
    • /
    • pp.703-721
    • /
    • 2017
  • The experimental study of the behavior of dry medium and loose sandy soil under the action of a single impulsive load is carried out. Different falling masses from different heights were conducted using the falling weight deflectometer (FWD) to provide the single pulse energy. The responses of soils were evaluated at different locations (vertically below the impact plate and horizontally away from it). These responses include; displacements, velocities, and accelerations that are developed due to the impact acting at top and different depth ratios within the soil using the falling weight deflectometer (FWD) and accelerometers (ARH-500A Waterproof, and Low capacity Acceleration Transducer) that are embedded in the soil and then recorded using the multi-recorder TMR-200. The behavior of medium and loose sandy soil was evaluated with different parameters, these are; footing embedment, depth ratios (D/B), diameter of the impact plate (B), and the applied energy. It was found that increasing footing embedment depth results in: amplitude of the force-time history increases by about 10-30%. due to increase in the degree of confinement with the increasing in the embedment, the displacement response of the soil will decrease by about 25-35% for loose sand, 35-40% for medium sand due to increase in the overburden pressure when the embedment depth increased. For surface foundation, the foundation is free to oscillate in vertical, horizontal and rocking modes. But, when embedding a footing, the surrounding soil restricts oscillation due to confinement which leads to increasing the natural frequency, moreover, soil density increases with depth because of compaction, that is, tendency to behave as a solid medium.

ASIC Design of Wavelet Transform Filter for Moving Picture (동영상용 웨이브렛 변환 필터의 ASIC 설계)

  • Kang, Bong-Hoon;Lee, Ho-Joon;Koh, Hyung-Hwa
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.12
    • /
    • pp.67-75
    • /
    • 1999
  • In this paper, we present an ASIC(Application Specific Integrated Circuit) design of wavelet transform filter Wavelet transform is used in lots of application fields which include image compression, because it has an excellent energy compaction. The operation characteristic and performance of wavelet transform filter are analyzed by using verilog-HDL(Hardware Description Language). In this paper, the designed wavelet transform filter uses line memory to improve data processing rate. Generally, when it reads and writes data of DRAM by using Fast Page Mode, input and output processing is very fast in horizontal direction but substantially slow in vertical direction. The use of line memory solves this low speed processing problem. As a result, though the size of the chip is getting larger, processing time for an image frame becomes 4.66ms. Generally, since the limit of 1 frame processing time on the data of TV video is 33ms, so it is appropriate for TV video.

  • PDF

Analysis of the Segmental Reinforced Retaining Wall Behavior by Field Monitoring (현장계측을 통한 블럭식 보강토 옹벽의 거동분석)

  • Shin, Eun Chul;Lee, Chang-Seup
    • Journal of the Korean Geosynthetics Society
    • /
    • v.3 no.1
    • /
    • pp.3-15
    • /
    • 2004
  • Geogrid reinforced soil structures with segmental block facing have been increased since 1990's, because of the convenience of installation and the flexible appearance. In this paper, the behavior of the segmental reinforced retaining wall was analysed with the results of field monitoring. The height and length of reinforced wall are 12m and 25m, respectively. The field measurement equipments are horizontal and vertical earth pressure cells, settlement plate, strain gauge, inclinometer, and displacement pin. Based on the field monitoring, the horizontal earth pressure was approximately 0.3times higher than that of the theoretical method and the maximum tensile strength of reinforcement was 26.2kN/m. The displacement of facing wall was 23mm at the point of 7.1m height of the wall and toward the wall facing. The results of the study indicate that the segmental reinforced retaining wall is in a stable condition because of good compaction & reinforcement effects, and long period of construction time. Finally, the computer program of SRWall is very useful tool to design the segmental reinforced retaining wall.

  • PDF

Effect of moisture on sealing ability of root canal filling with different types of sealer through the glucose penetration model (수종의 실러를 이용한 근관 충전 시 근관 내 수분이 치근단 폐쇄효과에 미치는 영향)

  • Jang, Jin-Ah;Kim, Hee-Lyang;Her, Mi-Ja;Lee, Kwang-Won;Yu, Mi-Kyung
    • Restorative Dentistry and Endodontics
    • /
    • v.35 no.5
    • /
    • pp.335-343
    • /
    • 2010
  • Objectives: To compared the effect of different levels of moisture of root canal on the sealing ability after filling with four different types of sealer. Materials and Methods: Single-rooted teeth (n = 90) instrumented to and apical size of 0.06 / 45 were randomly assigned to 12 experimental groups (n = 7 per group), positive/negative control groups (n = 3 per group). The teeth of the experimental groups (a. DRY; b. PAPER POINT DRY; c. WET) were obturated with sealer (Group 1-3: Sealapex; Group 4-6: AH plus; Group 7-9: Tubuli-seal; Group 10-12: EndoRez) and warm vertical compaction method. After 7 days in $37^{\circ}C$, 100% humidity, the coronal-to-apical microleakage was evaluated quantitatively using a glucose leakage model. The leaked glucose concentration was measured with spectrophotometer at 1, 3, 7, 14, 21, and 30 days. Data were recorded ad mmol/L and statistically analysed with the two-way ANOVA and Duncan test (p = 0.05). Results: Throughout the experimental period Tubuli-seal/WET (Group 9) showed the highest mean cumulative glucose penetration (178.75 mmol/L), whereas AH plus/DRY (Group 4) had the least (20.78 mmol/L). Conclusions: The results of this study demonstrated that the moisture condition of root canals at the time of obturation and the type of sealer that was used had a significant effect on leakage and sealing ability. Thus drying procedure according to sealer types is a critical step and should not be missed in endodontic treatment.

Response of circular footing on dry dense sand to impact load with different embedment depths

  • Ali, Adnan F.;Fattah, Mohammed Y.;Ahmed, Balqees A.
    • Earthquakes and Structures
    • /
    • v.14 no.4
    • /
    • pp.323-336
    • /
    • 2018
  • Machine foundations with impact loads are common powerful sources of industrial vibrations. These foundations are generally transferring vertical dynamic loads to the soil and generate ground vibrations which may harmfully affect the surrounding structures or buildings. Dynamic effects range from severe trouble of working conditions for some sensitive instruments or devices to visible structural damage. This work includes an experimental study on the behavior of dry dense sand under the action of a single impulsive load. The objective of this research is to predict the dry sand response under impact loads. Emphasis will be made on attenuation of waves induced by impact loads through the soil. The research also includes studying the effect of footing embedment, and footing area on the soil behavior and its dynamic response. Different falling masses from different heights were conducted using the falling weight deflectometer (FWD) to provide the single pulse energy. The responses of different soils were evaluated at different locations (vertically below the impact plate and horizontally away from it). These responses include; displacements, velocities, and accelerations that are developed due to the impact acting at top and different depths within the soil using the falling weight deflectometer (FWD) and accelerometers (ARH-500A Waterproof, and Low capacity Acceleration Transducer) that are embedded in the soil in addition to soil pressure gauges. It was concluded that increasing the footing embedment depth results in increase in the amplitude of the force-time history by about 10-30% due to increase in the degree of confinement. This is accompanied by a decrease in the displacement response of the soil by about 40-50% due to increase in the overburden pressure when the embedment depth increased which leads to increasing the stiffness of sandy soil. There is also increase in the natural frequency of the soil-foundation system by about 20-45%. For surface foundation, the foundation is free to oscillate in vertical, horizontal and rocking modes. But, when embedding a footing, the surrounding soil restricts oscillation due to confinement which leads to increasing the natural frequency. Moreover, the soil density increases with depth because of compaction, which makes the soil behave as a solid medium. Increasing the footing embedment depth results in an increase in the damping ratio by about 50-150% due to the increase of soil density as D/B increases, hence the soil tends to behave as a solid medium which activates both viscous and strain damping.

Behavior Characteristics of Underground Flexible Pipe Backfilled with Lightweight Foamed Soil (경량기포혼합토로 뒷채움된 연성매설관의 거동특성)

  • Lee, Yong-Jae;Yea, Geu-Guwen;Park, Sang-Won;Kim, Hong-Yeon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.1
    • /
    • pp.43-50
    • /
    • 2015
  • Lightweight Foamed Soil (LWFS) is a useful material for underground pipe backfill because of reusability of excavated soil and no compaction effect. In this research, a pilot test is carried out and monitoring results are analyzed to investigate behaviors of a flexible pipe, when LWFS is applied as a backfill material. Simultaneously, they are compared with another test case which is backfilled with Saemangeum dredged soil. As a result, the vertical earth pressure of the case backfilled with LWFS slurry presents that decreases as much as 25.6% in comparison with dredged soil and it is only within 10% after solidification. In case backfilled with dredged soil, the horizontal earth pressure is more than 3.6 times of the case used by LWFS and the vertical and horizontal deformation is more than 3.2 and 2.6 times of the case, respectively. It presents excellent effects on earth pressure and deformation reduction of LWFS. The stresses measured at the upper side of the pipe generally present compressive aspects in case backfilled with dredged soil. However, they present tensile aspects in case of LWFS. It is because of negative moment occurred at the center of the pipe due to the buoyancy from LWFS slurry. Conclusively, LWFS using Saemangeum dredged soil is very excellent material to use near the area in comparison with the dredged soil. However, the countermeasure to prevent the buoyancy is required.

A Study on Soil Characteristics of Paddy Fields with Re-established Soils

  • Sonn, Yeon-Kyu;Moon, Yong-Hee;Zhang, Yong-Seon;Jung, Kang-Ho;Cho, Hye-Rae;Hyun, Byung-Keun;Shin, Kook-Sik;Han, Kyeong-Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.3
    • /
    • pp.194-204
    • /
    • 2015
  • Six study sites in Gumi, Goryeong in Gyeongbuk province and Naju in Jeonnam province were selected to investigate soil properties of poorly drained horizons in paddy soils. The horizons were re-established layers which were parent material layers originated from fluvial deposits. Topsoil layers were differentiated from piled parent materials while soil structure of the topsoil layer was massive with striated microstructure. Compaction at soil re-establishment and a lack of structure and aggregate development in these soils may cause the limitation of vertical water movement and result in poorly drained horizons. Soil samples were taken from paddy fields with top soils of sandy loam, silt loam and silty clay loam and re-established soils of coarse and fine texture. The samples were taken from each horizon for the analyses of soil chemical and mineral properties. Soils with re-established soils of coarse texture had greater amounts of sands from top soil texture distributions, while soils with fine texture had greater amounts of silts. Chemical properties of top soils were analyzed from rice cultivated soils at the time of re-establishments and one year after the re-establishments. The coarse texture of the re-established horizons decreased in EC values from 0.23 to $0.11(dS\;m^{-1})$, available phosphate values from 112 to $54(mg\;kg^{-1})$, and exchangeable Ca values from 6.6 to $4.9(cmol_c\;kg^{-1})$. On the other hand, soils with fine texture showed decrease only in pH and exchangeable Ca values. Especially, organic matter and available phosphate contents showed heterogeneous distributions from each horizon. This result may be caused by mixture of plough layer and subsurface layer during and consolidation. Hydraulic conductivity values were low at the boundaries of top soil and parent material layers except SL/coarse soil. Soil microstructure was massive structure without soil clods or pores and showed striated structure. Therefore, re-established paddy fields with fluvial deposits as parent material layers showed limited vertical movements of soil water because of occurrence of compacted layers and less-development of soil clods and aggregates.

Evaluation of Construction Operation and Design Properties of CLSM for Corrugated Pipe in Underground (파형강관을 이용한 지하매설물용 뒤채움재 설계 및 시공성 평가)

  • Lee Kwan-Ho;Park Jae-Heon
    • International Journal of Highway Engineering
    • /
    • v.8 no.2 s.28
    • /
    • pp.63-74
    • /
    • 2006
  • During the construction of circular underground pipe, the non-proper compaction along the pipe and the decrease of compaction efficiency have been the main problems to induce the failure of underground pipe or facility. The use of CLSM (controlled low strength materials) should be one of the possible applications to overcome those problems. In this research, the full-scaled field test and the numeric analysis using PENTAGON-3D FEM program were carried out for three different cases on the change of backfill materials, including the common sand, the soil from construction site, and the CLSM. From the full-scaled test in field, the use of in-situ CLSM as backfill materials reduced the vertical and lateral deformation of the pipe, as well as the deformation of the ground surface. The main reason for reducing the deformation would be the characteristics of the CLSM, especially self-leveling and self-hardening properties. The measured earth pressure at the surround of the corrugated pipe using the CLSM backfills was the smaller than the other cases, and the absolute value was almost zero. Judging from the full-scaled field test and FEM analysis, the use of CLSM as backfill materials should be one of the best choices reducing the failure of the underground pipes.

  • PDF

The Behavior on Stress and Settlement of GCP Composite Ground with Different Shear Strength of Soil (GCP로 개량된 복합지반의 지반강도 별 응력 및 침하거동)

  • Na, Seung-Ju;Kim, Daehyeon;Kim, Gyeong-Eop
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.3
    • /
    • pp.63-74
    • /
    • 2017
  • Although the Granular Compaction Pile (GCP) has been used for many decades, several failures still occur such as bulging, shear failure and other phenomena, indicating that more refined study is needed. The main objective of the study is to evaluate the stress concentration ratio for both area replacement ratio and shear strength of soil through literature review and numerical analysis. Numerical analysis using the finite element program ABAQUS has been performed for the composite ground with GCP. The behavior stress and settlement of composite ground have been analyzed for both the area replacement ratio (10~40%) and shear strength of soil (25~75 kPa). As a result of numerical analysis, as the soil strength and area replacement ratio increased, the average stree related coefficient and stress concentration ratio for depth tended to decrease, and stress related coefficient of upper layer tend to decrease equally, but the stress concentration ratio decreased. Therefore, tendency that the value in th upper layer differs from the value in other depths was displayed. Care should be taken because it is possible to make mistakes in designing the entire composite ground with the values measured in the upper layer. Also, the settlement reduction factor was compared with the existing equation and numerical analysis. And the value obatined from the existing equation and numerical analysis are similar.

Comparison of Construction Cost and External Stability of Railway Abutment wall with Friction Angle of Backfill Materials (뒷채움재의 내부마찰각 변화에 따른 철도교대의 안정성 및 공사비 비교)

  • Yoo, Chunghyun;Choi, Chanyong;Yang, Sangbeom;Park, Yonggul
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.3
    • /
    • pp.67-76
    • /
    • 2016
  • The railway bridge abutment subjected to the lateral earth pressure is a sensitive structure that is affected by backfill materials, installation methods, compaction, and drainage system and so on. The several design loads for the bridge abutment design consist of traffic loading on bridges and vertical & lateral force due to surcharge load at backfill. Especially, the lateral earth pressure of design load components is important and considered in the design of geotechnical engineering structure such as bridge abutment wall. The determination of cross section for abutment is finally determined with calculating external stability and member force of abutment wall structures. In this study, the abutment wall height is 12m and the optimal cross section of abutment wall has been determined that satisfies an external stability for abutment structure through friction angles of 35, 40, and 45 degrees of backfill materials. The external stability and member force of abutment wall with friction angle of backfill materials and were calculated and construction cost of each abutment wall structures was compared. It found that the construction cost was reduced from 2.2 to 8.4% with friction angle of backfill materials.