• Title/Summary/Keyword: Vertical change

Search Result 1,406, Processing Time 0.035 seconds

Full-mouth rehabilitation with increasing minimum vertical dimension in the patient with severely worn dentition and deep bite (과도한 치아 마모와 과개교합을 보이는 환자에서 최소한의 수직 고경 증가를 동반한 전악 구강 회복 증례)

  • Lee, Kang-Shin;Park, Ju-Mi;Ahn, Seung-Geun;Seo, Jae-Min;Han, Chang-Hee;Lee, Jung-Jin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.59 no.4
    • /
    • pp.431-441
    • /
    • 2021
  • Full-mouth rehabilitation with increasing vertical dimension can be used for patients with severely worn teeth. In severely worn teeth also, the alveolar process can be elongated to compensate for the reduced vertical dimension, and the patient's vertical dimension of occlusion can be kept constant. However, full-mouth rehabilitation with increasing vertical dimension must be carefully chosen, because the vertical dimension can be reduced by tooth wear. It is important to establish a treatment plan with the systematic diagnosis of the change in the vertical dimension and gain space for the prosthesis. It is necessary to change the vertical dimension to secure the restoration space and select the minimum vertical dimension elevation for the esthetic and functional goal. In this case report, the patient complained of difficulty during chewing due to a worn dentition and wanted esthetic improvement of the short mandibular anterior teeth. After systematic evaluation and diagnosis, we performed full-mouth rehabilitation with minimum vertical dimension elevation to obtain the space for restoration. This resulted in a stable and harmonious occlusion, and the functional and esthetic problems of the patient were solved after treatment. The patient was satisfied with the results of the treatment and maintained stable occlusion during the follow-up period.

Analysis of Productivity in Rice Plant - (III) Dynamic Change of Canopy Structure - (벼의 생산력 분석 - (III) 군락구조의 동적변화 -)

  • Park, Hoon;Park, Young-Sun
    • Applied Biological Chemistry
    • /
    • v.15 no.1
    • /
    • pp.41-47
    • /
    • 1972
  • Comparative study on dynamic change of canopy structure during ripening period were carried out by using newly bred high yield rice cultivar (IR 667-Suwon 213) and a commercial variety, Jinhung in relation to nitrogen nutrition. The results were as follows. 1. Canopy structure pattern (vertical distribution of dry matter density at heading)was vertical type for Jinhung and horizontal type for IR 667. 2. The vertical distribution pattern of leaf area density (or weight) in the canopy was central dominant type for IR 667 while apical dominant type for Jinhung. 3. Canopy conservation pattern and percent distribution pattern of leaf area density followed the vertical distribution pattern of leaf area density. 4. Canopy persistence was weaker in IR 667, thus they have smaller canopy conservation ratio indicating faster senescence. 5. Slow supply of nitrogen (sulfur coated urea) showed a trend to change the apical dominant pattern into the central dominant pattern by the conservation of central portion, and it-resulted in higher yield though nitrogen nutrition did little affect canopy pattern. 6. The central and apical dominant pattern appeared to be well matched to the upper leaf-dependent type and the lower leaf-dependent type of grain yield, respectively.

  • PDF

Does Strategy of Downward Stepping Stair Due to Load of Additional Weight Affect Lower Limb's Kinetic Mechanism?

  • Ryew, Checheong;Yoo, Taeseok;Hyun, Seunghyun
    • International journal of advanced smart convergence
    • /
    • v.9 no.4
    • /
    • pp.26-33
    • /
    • 2020
  • This study measured the downward stepping movement relative to weight change (no load, and 10%, 20%, 30% of body weight respectively of adult male (n=10) from standardized stair (rise of 0.3 m, tread of 0.29 m, width of 1 m). The 3-dimensional cinematography and ground reaction force were also utilized for analysis of leg stiffness: Peak vertical force, change in stance phase leg length, Torque of whole body, kinematic variables. The strategy heightened the leg stiffness and standardized vertical ground reaction force relative to the added weights (p<.01). Torque showed rather larger rotational force in case of no load, but less in 10% of body weight (p<.05). Similarly angle of hip joint showed most extended in no-load, but most flexed in 10% of body weight (p<.05). Inclined angle of body trunk showed largest range in posterior direction in no-load, but in vertical line nearly relative to added weights (p<.001). Thus the result of the study proved that downward stepping strategy altered from height of 30 cm, regardless of added weight, did not affect velocity and length of lower leg. But added weight contributed to more vertical impulse force and increase of rigidity of whole body than forward rotational torque under condition of altered stepping strategy. In future study, the experimental on effect of weight change and alteration of downward stepping strategy using ankle joint may provide helpful information for development of enhanced program of prevention and rehabilitation on motor performance and injury.

Changes of Ground Reaction Forces by the Change of Club Length in Golf Swing (클럽의 길이 변화에 따른 골프 스윙의 지면반력 변화)

  • Sung, Rak-Joon
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.2
    • /
    • pp.31-40
    • /
    • 2007
  • Proper weight shifting is essential for a successful shot in golf swing and this could be described by means of the ground forces between the feet and ground. It is assumed that the ground forces would different according to the club used because the length and swing weight of each club is different. But, in present, it is not clear what changes are made by the change of clubs and this affect the swing motion. Therefore this study focused on the investigation of the changes of the ground forces and ground reaction forces (GRF) by the change of club length. The subjects were three professional male golfers. Four swings (driver, iron 3, iron 5, and iron 7) for each subject were taken by two high speed video cameras and two AMTI force platforms were used to measure the GRF simultaneously. Kwon GRF 2.0 and Mathcad 13 software were used to post processing the data. Changes of the three major component of GRF (Vertical, lateral, anterior-posterior force) at 10 predefined events were analyzed including the maximum. Major findings of this study were as follows. 1. Vertical forces; - There were no significant changes until the top of backswing. - Maximum was occurred at the club horizontal position in the downswing for both feet. The shorter club produced more maximum forces than longer ones in the left foot, but reverse were true for the right foot. - Maximum forces at impact shows the same patterns. 2. Lateral forces; Maximum was occurred at the club horizontal position for both feet, but there were no lateral forces because the direction of two forces was different. Maximum force pattern by different clubs was same as the vertical component. 3. Anterior-posterior forces; - This component made a counter-clock wise moment about a vertical axis located between two foot until the club vertical position was reached during the backswing, and reverse moment were produced when the club reached horizontal at the downswing. - Also this component made a forward moment about a horizontal axis located in the CG during the fore half of the downswing, and a reverse moment until the club reached vertical at the follow through phase. Maximum was occurred at the club vertical in the downswing for both feet. The longer club produced more maximum forces than shorter ones for both feet.

Calibration Kit for 4-Port Horizontal/Vertical Probing (4-포트 수평/수직 겸용 프로브용 교정키트)

  • Kim, Taeho;Kim, Jonghyeon;Kim, Sungjun;Kim, Kwangho;Pu, Bo;Nah, Wansoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.5
    • /
    • pp.559-575
    • /
    • 2014
  • In this paper, we propose a horizontal/vertical calibration kit for calibrating a vector network analyzer(VNA) to measure the vertical connector pin. If the conventional calibration kit is used, we should change the arm for a probe or need an assistant device and it takes a long time. In addition there is a risk of precision degradation caused by the position change of the probe tip sensitive to the surroundings. We suggest a 4-port vertical calibration kit to make up for the aforementioned shortcomings. The calibration kit was manufactured for the SOLT calibration method. 'Short', 'Open', and 'Load' are available in the horizontal plane, 'Thru' is available not only in the horizontal plane on the two planes of a PCB, but in the vertical plane between the two planes according to the positions of the probes. We complemented the conventional calibration kit to make a vertical calibration kit to be used for the vertical measurement method. We compared and analysed their reflection/transfer characteristics of the SOLT calibration standards of the proposed calibration kit and conventional one, we get a ${\pm}0.1$ dB differences of transfer characteristics in the range from 300 kHz to 8.5 GHz. In order to demonstrate usefulness, and we performed a case study for horizontal and vertical cases, and compared the results of the proposed calibration kit and conventional one.

Influence of Water Depth on Climate Change Impacts on Caisson Sliding of Vertical Breakwater (직립방파제의 케이슨 활동에 미치는 기후변화영향에 대한 수심의 효과)

  • Kim, Seung-Woo;Kim, So-Yeon;Suh, Kyung-Duck
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.3
    • /
    • pp.179-188
    • /
    • 2012
  • Performance analyses of vertical breakwaters were conducted for fictitiously designed breakwaters for various water depths to analyze the influence of climate change on the structures. The performance-based design method considering sea level rise and wave height increase due to climate change was used for the performance analysis. One of the problems of the performance-based design method is the large calculation time of wave transformation. To overcome this problem, the SWAN model combined with artificial neural network was used. The significant wave height and principal wave direction at the breakwater site are quickly calculated by using a trained neural network with inputs of deepwater significant wave height and principal wave direction, and tidal level. In general, structural stability becomes low due to climate change impacts, but the trend of stability is different depending on water depth. Outside surf zone, the influence of wave height increase becomes more significant, while that of sea level rise becomes negligible, as water depth increases. Inside surf zone, the influence of both wave height increase and sea level rise diminishes as water depth decreases, but the influence of wave height increase is greater than that of sea level rise. Reinforcement and maintenance policies for vertical breakwaters should be established with consideration of these results.

Prediction of frontal soft tissue changes after mandibular surgery in facial asymmetry individuals (안면비대칭자의 하악골 악교정수술 후 정면 연조직 변화 예측을 위한 연구)

  • Hwang, Hyeon-Shik;Lee, Jessica J.;Hwang, Chung-Hyon;Choi, Hak-Hee;Lim, Hoi-Jeong
    • The korean journal of orthodontics
    • /
    • v.38 no.4
    • /
    • pp.252-264
    • /
    • 2008
  • Objective: To aid the development of a frontal image simulating program, we evaluated the soft tissue frontal changes in relationship to movement of hard tissue with orthognathic surgery of facial asymmetry patients. Methods: Preoperative and postoperative frontal cephalograms and frontal view photographs of 45 mandibular surgery patients with facial asymmetry were obtained in a standardized manner. Vertical and horizontal changes of hard tissue and soft tissue were measured from cephalograms and photographs, respectively. Soft tissue change in result to hard tissue change was then analyzed. Results: Both vertical and horizontal correlation analysis showed a weak relationship between the changes. Hard tissue points that were picked for 1 : 1 mean ratio with soft tissue points did not show any significant relevance. For each soft tissue change, regressive equation was formulated by stepwise multiple regression analysis, and the equation for soft tissue Menton was most reliable in predicting changes. Both vertical and horizontal hard tissue changes were used together in prediction of vertical or horizontal soft tissue change. Conclusions: The results suggest that computerized image simulation using regression analysis may be of help for prediction of soft tissue change, while 1:1 mean ratio method is not useful.

A Study on Change in Climate Change Adaptation Governance of Korean Local Governments - Focusing on the Process of Developing the Climate Change Adaptation Action Plan and Its Implementation Stage - (지방자치단체 기후변화 적응 거버넌스 변화 연구 - 기후변화 적응대책 세부시행계획 수립 단계와 이후를 중심으로 -)

  • Koh, Jaekyung
    • Journal of Climate Change Research
    • /
    • v.8 no.2
    • /
    • pp.99-108
    • /
    • 2017
  • This study aims to analyze the features of adaptation governance of local governments by applying a multi-level governance framework, and to draw policy implications. We analyzed changes in governance of 17 metropolitan cities/provinces, and 33 municipalities in terms of horizontal and vertical cooperation in the process of developing 'The Climate Change Adaptation Action Plan' and its implementation stage. The result shows that the plan contributed to the higher level of vertical cooperation between the central and the local governments to a certain extent, however, during the implementation stage, the level of the partnership decreased due to the absence of governance mechanism. These trends were statistically significant at the level of municipalities. The role of Korea Adaptation Center for Climate Change (KACCC) was also diminished after establishing the plan. The horizontal partnership level among the relevant departments of the local governments showed no significant change as the level was low even in the planning stage. Though Public-Private Partnership (PPP) has increased a bit, it was statistically significant only in the municipalities. Moreover, there was no governance mechanism for PPP or it did not work properly. Based on the results above, it is recommended that the effectiveness of the plans should be increased and support for climate change partnerships or forums at a local level that promotes adaptive capacity is needed. The role of metropolitan cities and provinces should be strengthened through building a multi-level partnership structure. Governance institutionalizing for monitoring and evaluation is also needed.