• Title/Summary/Keyword: Vertical and Horizontal Element

Search Result 386, Processing Time 0.031 seconds

A COMPARISON OF LOAD TRANSFER IN SCREW- AND CEMENT-RETAINED IMPLANT FIXED PARTIAL DENTURE DESIGNS (임플랜트 상부 보철물의 고정 방식에 따른 힘의 분포에 관한 연구 : 나사 유지형 대 시멘트 유지형)

  • Lee Joo-Hee;Kim Chang-Whe;Kim Yung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.2
    • /
    • pp.125-145
    • /
    • 2001
  • To compare the stress distribution patterns between cement-retained and screw-retained implant supported fixed prostheses according to four different abutment types, a three dimensional finite element analysis was performed. The hypothetical three unit fixed partial denture case was modelled on the three implants(10mm length and 3.75 diameter) in mandibular bone. Four angles of implantation(vertical, 10, 15 and 20 degree inclined mesially) were created and three different directions of force (vertical, oblique, horizontal) were applied at the center of the second premolar and distal end of the first molar for each cases. Within the limits of this study, the results were as follows, 1. In vertically installed cases, the more stress was concentrated at upper components, but mesially inclined cases, the more stress was concentrated at cortical bone. 2, The more inclined mesially the more stress was observed, especially at cortical bone. 3. The cement-retained models showed lower principal stress and more even stress distribution than the screw-retained models. 4. The similar stress distribution pattern was showed in model 1 and model 2, model 3 and model 4. 5. The more stress was observed when the loads were applied at the distal end of 1st molar than the center of 2nd premolar. 6 The fixture and the model as a whole, lesser stress values were observed when vertical loads were applied as compared to horizontal and oblique loads.

  • PDF

Prediction of Hydrofracture of Rock Salt under Ground at the Waste Isolation Pilot Plant (지하 핵 폐기물 저장 암염의 파괴현상 검증 및 분석)

  • Heo, Gwang-Hee;Lee, Cheo-Keun;Heo, Yol
    • Geotechnical Engineering
    • /
    • v.11 no.3
    • /
    • pp.139-162
    • /
    • 1995
  • The possibility of the development of gas driven hydrofractures at the Waste Isolation Pilot Plant(WIPP) is investigated through analytical and numerical calculations and through laboratory experiments. First, an investigation of the chemical reactions involved shows that a large volume of gas could potentially be generated through the oxidation of iron in the waste. Simple ground water'flow calculations then show that unless regions of high permeability has been created, this gas volume will build up the pressure high enough to cause tensile damage in the horizontal planes of weakness or in the halite itself. The analytical calculations were performed using the concepts of linear elastic fracture mechanics and the numerical calculations were done using the finite element method. Also, laboratory tests were conducted to illustrate possible failure mechanisms. It is possible that after growing horizontal crack in the weaker anhydride layer, the crack could break out of this layer and propagate upward into the halite and toward the ground surface at an inclined argle of around 53$^{\circ}$ above horizontal. To prevent this latter phenomenon the anhydrite must have a fracture toughness less than 0.5590 times than that of the halite. Through the tests, three types of crack(radial vertical cracks, horizontal circular cracks and cone -shaped cracks) were observed.

  • PDF

Analysis of Excitation Force and its Application in Vibratory Bowl Feeders (진동형 볼피더의 가진력 해석과 적용)

  • Oh, Seok-Gyu;Bae, Kang-Yul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.11
    • /
    • pp.70-77
    • /
    • 2020
  • Vibratory bowl feeders are widely utilized to align and feed the parts stacked inside the bowl of a feeder. The electro-magnetic force of the electromagnet in a bowl feeder generates the excitation force for the bowl to vibrate in both the horizontal and vertical directions to continuously feed the parts on the track. The feed rate of the part depends on the associated displacement in each direction during the vibration. Therefore, the excitation force induced by the electromagnet should be estimated in advance to ensure the suitable design of the bowl feeder. In this study, a theoretical solution was developed to calculate the electro-magnetic force of the electromagnet for a bowl feeder. Using the proposed solution, the electro-magnetic forces corresponding to a variation in the input parameters of the electromagnet, such as the voltage, frequency, and air gap, could be obtained. The force values obtained using the theoretical solution exhibited a satisfactory agreement with the results obtained using the finite element method, thereby demonstrating the validity of the approach. Subsequently, the bowl displacements were analyzed using the motion equation for the bowl feeder when the theoretically obtained excitation force were applied to vibrate the feeder. The correlation between the vertical displacements of the bowl and input parameters of the electromagnet could be obtained.

A Study on the Characteristics of Transferred Element in Composition of Architectural Spaces -Focusing on Path and Stairs (공간구성에 있어서 전이적 요소의 특성에 관한 연구 -통로와 계단을 중심으로 -)

  • 이승우;윤도근
    • Korean Institute of Interior Design Journal
    • /
    • no.7
    • /
    • pp.79-86
    • /
    • 1996
  • This study is searching the characteristics of transferred element in composition of architectural spaces ; it is ultimate goal that frame of reference is arranged system about path of horizontal direction is two-dimension and stairs of vertical in three-dimension as transferred element in Architectural plan. With the exception of stylized discussion or rhetorical analysis about these, it is analysed as element in physical order of a whole architecture in relation to another elements in composition of architecture spaces. And one who is perceptible and cognitive through spaces is the subject. Consequently , these elements are classified concept of location and circulation. And it can't think that the formal is divided the latter for accept behavior of pedestrican and thinking system to consider verticality and time property is absolutely conceptual elements in space of architectural plan.

  • PDF

Finite element modeling for structure-soil interaction analysis of plastic greenhouse foundation (온실기초의 구조물-지반 상호작용 해석을 위한 유한요소 모델링)

  • Ryu, Hee-Ryong;Cho, Myeong-Whan;Yu, In-Ho;Moon, Doo-Gyung
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.4
    • /
    • pp.455-460
    • /
    • 2014
  • In this study, structural behavior of plastic greenhouse foundation was investigated using rational finite element modeling for structures which have different material properties each other. Because the concrete foundation of plastic greenhouse and soil which surround and support the concrete foundation have very different material property, the boundary between two structures were modeled by a interface element. The interface element was able to represent sliding, separation, uplift and re-bonding of the boundary between concrete foundation and soil. The results of static and dynamic analysis showed that horizontal and vertical displacement of concrete foundation displayed a decreasing tendency with increasing depth of foundation. The second frequency from modal analysis of structure including foundation and soil was estimate to closely related with wind load.

Optimal Design of Permanent Magnet Actuator Using Parallel Genetic Algorithm (병렬유전 알고리즘을 이용한 영구자석형 액추에이터의 최적설계)

  • Kim, Joong-Kyoung;Lee, Cheol-Gyun;Kim, Han-Kyun;Hahn, Sung-Chin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.1
    • /
    • pp.40-45
    • /
    • 2008
  • This paper presents an optimal design of a permanent magnet actuator(PMA) using a parallel genetic algorithm. Dynamic characteristics of permanent magnet actuator model are analyzed by coupled electromagnetic-mechanical finite element method. Dynamic characteristics of PMA such as holding force, operating time, and peak current are obtained by no load test and compared with the analyzed results by coupled finite element method. The permanent magnet actuator model is optimized using a parallel genetic algorithm. Some design parameters of vertical length of permanent magnet, horizontal length of plunger, and depth of permanent magnet actuator are predefined for an optimal design of permanent magnet actuator model. Furthermore dynamic characteristics of the optimized permanent magnet actuator model are analyzed by coupled finite element method. A displacement of plunger, flowing current of the coil, force of plunger, and velocity of plunger of the optimized permanent magnet actuator model are compared with the results of a primary permanent magnet actuator model.

Assessment of non-prismatic beams having symmetrical parabolic haunches with constant haunch length ratio of 0.5

  • Yuksel, S. Bahadir
    • Structural Engineering and Mechanics
    • /
    • v.42 no.6
    • /
    • pp.849-866
    • /
    • 2012
  • Single span historic bridges often contain non-prismatic members identified with a varying depth along their span lengths. Commonly, the symmetric parabolic height variations having the constant haunch length ratio of 0.5 have been selected to lower the stresses at the high bending moment points and to maintain the deflections within the acceptable limits. Due to their non-prismatic geometrical configuration, their assessment, particularly the computation of fixed-end horizontal forces (FEFs) and fixed-end moments (FEMs) becomes a complex problem. Therefore, this study aimed to investigate the behavior of non-prismatic beams with symmetrical parabolic haunches (NBSPH) having the constant haunch length ratio of 0.5 using finite element analyses (FEA). FEFs and FEMs due to vertical loadings as well as the stiffness coefficients and the carry-over factors were computed through a comprehensive parametric study using FEA. It was demonstrated that the conventional methods using frame elements can lead to significant errors, and the deviations can reach to unacceptable levels for these types of structures. Despite the robustness of FEA, the generation of FEFs and FEMs using the nodal outputs of the detailed finite element mesh still remains an intricate task. Therefore, this study advances to propose effective formulas and dimensionless estimation coefficients to predict the FEFs, FEMs, stiffness coefficients and carry-over factors with reasonable accuracy for the analysis and re-evaluation of the NBSPH. Using the proposed approach, the fixed-end reactions due to vertical loads, and also the stiffness coefficients and the carry-over factors of the NBSPH can be determined without necessitating the detailed FEA.

Examination of 3D long-term viscoplastic behaviour of a CFR dam using special material models

  • Karalar, Memduh;Cavusli, Murat
    • Geomechanics and Engineering
    • /
    • v.17 no.2
    • /
    • pp.119-131
    • /
    • 2019
  • Time dependent creep settlements are one of the most important causes of material deteriorations for the huge water structures such as concrete faced rockfill dams (CFRDs). For this reason, performing creep analyses of CFRDs is vital important for monitoring and evaluating of the future and safety of such dams. In this study, it is observed how changes viscoplastic behaviour of a CFR dam depending the time. Ilısu dam that is the longest concrete faced rockfill dam (1775 m) in the world is selected for the three dimensional (3D) analyses. 3D finite difference model of Ilısu dam is modelled using FLAC3D software based on the finite difference method. Two different special creep material models are considered in the numerical analyses. Wipp-creep viscoplastic material model and burger-creep viscoplastic material model were rarely used for the creep analyses of CFRDs in the last are taken into account for the concrete slab and rockfill materials-foundation, respectively. Moreover, interface elements are defined between the concrete slab-rockfill materials and rockfill materials-foundation to provide interaction condition for 3D model. Firstly, dam and foundation are collapsed under its self-weight and static behaviour of the dam is evaluated for the empty reservoir conditions. Then, reservoir water is modelled considering maximum water level of the dam and time-dependent creep analyses are performed for maximum reservoir condition. In this paper, maximum principal stresses, vertical-horizontal displacements and pore pressures that may occur on the dam body surface during 30 years (from 2017 to 2047) are evaluated in detail. According to numerical analyses, empty and maximum reservoir conditions of Ilısu dam are compared with each other in detail. 4 various nodal points are selected under the concrete slab to better seen viscoplastic behaviour changes of the dam and viscoplastic behaviour differences of these points during 30 years are graphically presented. It is clearly seen that horizontal-vertical displacements and principal stresses for maximum reservoir condition are more than the empty reservoir condition of the dam and significant pore pressures are observed during 30 years for maximum reservoir condition. In addition, horizontal-vertical displacements, principal stresses and pore pressures for 4 nodal points obviously increased until a certain time and changes decreased after this time.

Effective Method for Remodeling of Deteriorated Agricultural Reservoirs (노후화된 농업용 저수지의 효율적인 리모델링 방법)

  • Lee, Young Hak;Lee, Dal Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.4
    • /
    • pp.43-52
    • /
    • 2017
  • This study analyzed pore water pressure, earth pressure and settlement through laboratory model tests in order to suggest the effective remodeling method in the case of reinforcing the upstream and downstream slope of deteriorated reservoirs that has no cores and filters or is not functional. The method of remodeling the upstream slope using dredge soil is first prevent seepage by installing the core, and the leakage water can be rapidly discharged through a filter installed on the downstream slope. Therefore, it is considered a highly efficient method of remodeling that reduces piping phenomena and increasing the storage capacity of the reservoir. The variation of earth pressure without the core and filter was greater than with it, while the change largely showed in the upstream slope, the downstream slope did not show any significant changes. The remodeling method of the downstream slope with the core appeared differently pore water pressure depending on the presence of the vertical and horizontal filters. In the upstream slope, the pore water pressure rises sharply, the base and middle gradually increased, and the downstream slope appeared small. The pore water pressure of embankment with a vertical and horizontal filter will be smaller than without it. The remodeling of deteriorated reservoir that does not have the function of the filter, the vertical filter must be installed in a position that is higher than the expected seepage line by removing portions of the downstream slopes. Since the horizontal filter is an important structure that provides stable drainage during an earthquake or concentrated leak, it is necessary to examine any change in the seepage characteristics depending on the filter intervals via three-dimensional finite element analysis, and it should be connected to the tow-drain to reduce the possibility of the collapse of the reservoir.

Finite element based total response analysis of rectangular liquid containers against different excitations

  • Kalyan Kumar Mandal
    • Ocean Systems Engineering
    • /
    • v.13 no.1
    • /
    • pp.57-77
    • /
    • 2023
  • In the present study, the total hydrodynamic pressure exerted by the fluid on walls of rectangular tanks due to horizontal excitations of different frequencies, is investigated by pressure based finite element method. Fluid within the tanks is invisid, compressible and its motion is considered to be irrotational and it is simulated by two dimensional eight-node isoparametric. The walls of the tanks are assumed to be rigid. The total hydrodynamic pressure increases with the increase of exciting frequency and has maximum value when the exciting frequency is equal to the fundamental frequency. However, the hydrodynamic pressure has decreasing trend for the frequency greater than the fundamental frequency. Hydrodynamic pressure at the free surface is independent to the height of fluid. However, the pressure at base and mid height of vertical wall depends on height of fluid. At these two locations, the hydrodynamic pressure decreases with the increase of fluid depth. The depth of undisturbed fluid near the base increases with the increase of depth of fluid when it is excited with fundamental frequency of fluid. The sloshing of fluid with in the tank increases with the increase of exciting frequency and has maximum value when the exciting frequency is equal to the fundamental frequency of liquid. However, this vertical displacement is quite less when the exciting frequency is greater than the fundamental frequency.