• Title/Summary/Keyword: Vertical and Horizontal Element

Search Result 386, Processing Time 0.037 seconds

Vector mechanics-based simulation of large deformation behavior in RC shear walls using planar four-node elements

  • Zhang, Hongmei;Shan, Yufei;Duan, Yuanfeng;Yun, Chung Bang;Liu, Song
    • Structural Engineering and Mechanics
    • /
    • v.74 no.1
    • /
    • pp.1-18
    • /
    • 2020
  • For the large deformation of shear walls under vertical and horizontal loads, there are difficulties in obtaining accurate simulation results using the response analysis method, even with fine mesh elements. Furthermore, concrete material nonlinearity, stiffness degradation, concrete cracking and crushing, and steel bar damage may occur during the large deformation of reinforced concrete (RC) shear walls. Matrix operations that are involved in nonlinear analysis using the traditional finite-element method (FEM) may also result in flaws, and may thus lead to serious errors. To solve these problems, a planar four-node element was developed based on vector mechanics. Owing to particle-based formulation along the path element, the method does not require repeated constructions of a global stiffness matrix for the nonlinear behavior of the structure. The nonlinear concrete constitutive model and bilinear steel material model are integrated with the developed element, to ensure that large deformation and damage behavior can be addressed. For verification, simulation analyses were performed to obtain experimental results on an RC shear wall subjected to a monotonically increasing lateral load with a constant vertical load. To appropriately evaluate the parameters, investigations were conducted on the loading speed, meshing dimension, and the damping factor, because vector mechanics is based on the equation of motion. The static problem was then verified to obtain a stable solution by employing a balanced equation of motion. Using the parameters obtained, the simulated pushover response, including the bearing capacity, deformation ability, curvature development, and energy dissipation, were found to be in accordance with the experimental observation. This study demonstrated the potential of the developed planar element for simulating the entire process of large deformation and damage behavior in RC shear walls.

Hysteretic Characteristics and Deformation Modes of Steel Plate Shear Walls According to Aspect Ratios and Width-to-Thickness Ratios (강판 형상비 및 판폭두께비에 따른 강판전단벽의 변형모드 및 이력특성)

  • Shin, Dong-Hyeon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.24 no.1
    • /
    • pp.37-45
    • /
    • 2024
  • Steel plate shear walls (SPSWs) have been recognized as an effective seismic-force resisting systems due to their excellent strength and stiffness characteristics. The infill steel plate in a SPSW is constrained by a boundary frame consisting of vertical and horizontal structural members. The main purpose of this study was to investigate deformation modes and hysteretic characteristics of steel plate shear walls (SPSWs) to consider the effects of their aspect ratios and width-to-thicness ratios. The finite element model (FEM) was establish in order to simulate cyclic responses of SPSWs which have the two-side clamped boundary condition and made of conventional steel grade. The stress distribution obtained from the FEA results demonstrated that the principal stresses on steel plate with large thickness-to-width ratio were more uniformly distributed along its horizontal cross section due to the formation of multiple struts.

Three-dimensional finite element analysis on the effects of maxillary protraction with an individual titanium plate at multiple directions and locations

  • Fan Wang;Qiao Chang;Shuran Liang;Yuxing Bai
    • The korean journal of orthodontics
    • /
    • v.54 no.2
    • /
    • pp.108-116
    • /
    • 2024
  • Objective: A three-dimensional-printed individual titanium plate was applied for maxillary protraction to eliminate side effects and obtain the maximum skeletal effect. This study aimed to explore the stress distribution characteristics of sutures during maxillary protraction using individual titanium plates in various directions and locations. Methods: A protraction force of 500 g per side was applied at forward and downward angles between 0° and 60° with respect to the Frankfort horizontal plane, after which the titanium plate was moved 2 and 4 mm upward and downward, respectively. Changes in sutures with multiple protraction directions and various miniplate heights were quantified to analyze their impact on the maxillofacial bone. Results: Protraction angle of 0-30° with respect to the Frankfort horizontal plane exhibited a tendency for counterclockwise rotation in the maxilla. At a 40° protraction angle, translational motion was observed in the maxilla, whereas protraction angles of 50-60° tended to induce clockwise rotation in the maxilla. Enhanced protraction efficiency at the lower edge of the pyriform aperture was associated with increased height of individual titanium plates. Conclusions: Various protraction directions are suitable for patients with different types of vertical bone surfaces. Furthermore, when the titanium plate was positioned lower, the protraction force exhibited an increase.

Experimental Investigation on Deformation Capacity of CFT Column to H-Steel Beam Connections (콘크리트충전 각형기둥-H형강보 접합부의 변형능력에 관한 실험적 연구)

  • Kim, Young Ju;Chae, Young Suk;Shin, Kyung Jae;Oh, Young Suk;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.1 s.68
    • /
    • pp.113-121
    • /
    • 2004
  • A test program was conducted on full-scale steel moment connections constructed using a T-stiffener. In the T-stiffener connection, the beam-to-column connection was reinforced with the horizontal and vertical element of the T-stiffener to resist moment under severe cyclic loads. A total of five specimens were tested in this study together with a concrete-filled tubular(CFT) column(${\sqsubset}-500{\times}500{\times}12$) and a steel beam($H-506{\times}201{\times}11{\times}19$). For the specimens, the T-stiffener was combined with RBS (also known as "Dog-bone") detail or Horizontal Element Hole(HEH) detail constructed to enhance deformation capacity. The test program showed excellent seismic performance for specimens constructed with an RBS or an HEH. except the specimens had brittle failure of VE. The test results also showed that the connections all developed maximum moments at the face of the column. Such moments were at least 15% and as much as 36% larger than the plastic moment capacity of the beam. based on the actual yield stress of the beam steel.

Seismic Qualification Analysis of a Vertical-Axis Wind Turbine (소형 수직축 풍력발전기의 내진검증 해석)

  • Choi, Young-Hyu;Hong, Min-Gi
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.3
    • /
    • pp.21-27
    • /
    • 2016
  • The static and dynamic structural integrity qualification was performed through the seismic analysis of a small-size Savonius-type vertical wind turbine at dead weight plus wind load and seismic loads. The ANSYS finite element program was used to develop the FEM model of the wind turbine and to accomplish static, modal, and dynamic frequency response analyses. The stress of the wind turbine structure for each wind load and dead weight was calculated and combined by taking the square root of the sum of the squares (SRSS) to obtain static stresses. Seismic response spectrum analysis was also carried out in the horizontal (X and Y) and vertical (Z) directions to determine the response stress distribution for the required response spectrum (RRS) at safe-shutdown earthquake with a 5% damping (SSE-5%) condition. The stress resulting from the seismic analysis in each of the three directions was combined with the SRSS to yield dynamic stresses. These static and dynamic stresses were summed by using the same SRSS. Finally, this total stress was compared with the allowable stress design, which was calculated based on the requirements of the KBC 2009, KS C IEC 61400-1, and KS C IEC 61400-2 codes.

Development of Viscoelastic Finite Element Analysis Code for Pavement Structures (도로포장 구조해석을 위한 점탄성 유한요소 해석코드 개발)

  • Lee, Chang-Joon;Yoo, Pyeong-Jun;Choi, Ji-Young;Ohm, Byung-Sik
    • International Journal of Highway Engineering
    • /
    • v.14 no.5
    • /
    • pp.1-9
    • /
    • 2012
  • PURPOSES: A viscoelastic axisymmetric finite element analysis code has been developed for stress analysis of asphalt pavement structures. METHODS: Generalized Maxwell Model (GMM) and 4-node isoparametric element were employed for finite element formulation. The code was developed using $C^{+}^{+}$ computer program language and named as KICTPAVE. For the verification of the developed code, a structural model of a pavement system was constructed. The structural model was composed of three layers: asphalt layer, crushed stone layer, and soil subgrade. Two types of analysis were considered for the verification: (1)elastic static analysis, (2)viscoelastic time-dependent analysis. For the elastic static analysis, linear elastic material model was assigned to all the layers, and a static load was applied to the structural model. For the viscoelastic time-dependent analysis, GMM and linear elastic material model were assigned to the asphalt layer and all the other layers respectively, and a cyclic loading condition was applied to the structural model. RESULTS: The stresses and deformations from KICTPAVE were compared with those from ABAQUS. The analysis results obtained from the two codes showed good agreement in time-dependent response of the element under the loading area as well as the surface deformation of asphalt layer, and horizontal and vertical stresses along the axisymmetric axis. CONCLUSIONS: The validity of KICTPAVE was confirmed by showing the agreement of the analysis results from the two codes.

Investigation of pipe shear connectors using push out test

  • Nasrollahi, Saeed;Maleki, Shervin;Shariati, Mahdi;Marto, Aminaton;Khorami, Majid
    • Steel and Composite Structures
    • /
    • v.27 no.5
    • /
    • pp.537-543
    • /
    • 2018
  • Mechanical shear connectors are commonly used to transfer longitudinal shear forces across the steel-concrete interface in composite beams. Steel pipe as a new shear connector is proposed in this research and its performance to achieve composite strength is investigated. Experimental monotonic push-out tests were carried out for this connector. Then, a nonlinear finite element model of the push-out specimens is developed and verified against test results. Further, the finite element model is used to investigate the effects of pipe thickness, length and diameter on the shear strength of the connectors. The ultimate strengths of these connectors are reported and their respective failure modes are discussed. This paper comprises of the push-out tests of ten specimens on this shear connector in both the vertical and horizontal positions in different reinforced concretes. The results of experimental tests are given as load-deformation plots. It is concluded that the use of these connectors is very effective and economical in the medium shear demand range of 150-350 KN. The dominant failure modes observed were either failure of concrete block (crushing and splitting) or shear failure of pipe connector. It is shown that the horizontal pipe is not as effective as vertical pipe shear connector and is not recommended for practical use. It is shown that pipe connectors are more effective in transferring shear forces than channel and stud connectors. Moreover, based on the parametric study, a formula is presented to predict the pipe shear connectors' capacity.

Nonlinear finite element analysis of loading transferred from column to socket base

  • Anil, Ozgur;Uyaroglu, Burak
    • Computers and Concrete
    • /
    • v.11 no.5
    • /
    • pp.475-492
    • /
    • 2013
  • Since the beginning of the 90 s, depending on the growth of the industrial sector in Turkey, factory constructions have been increased. The cost of precast concrete buildings is lower than the steel ones for this reason the precast structural systems are used more. Precast concrete structural elements are mostly as strong as not to have damage in the earthquake but weakness of connections between elements causes unexpected damages of structure during earthquake. When looking at the previous researches, it can be seen that there is a lack of studies about socket type base connections although there were many experimental and analytical studies about the connections of precast structural elements. The aim of this study is to investigate the stress transfer mechanism between column and the socket base wall with finite element method. For the finite element analysis ANSYS software was used. A finite element model was created which is the simulation of experimental research executed by Canha et al. (2009) under vertical and horizontal forces. Results of experimental research and finite element analysis were compared to create a successful simulation of experimental program. After determining the acceptable parameters, models of socket bases were created. Model dimensions were chosen according to square section column sizes 400, 450, 500, 550 and 600 mm which were mostly used in industrial buildings. As a result of this study, stress distribution at center section of the socket base models were observed and it is found that stress distribution affects triangular at the half of socket bottom and top.

Analysis on the behavior of Stiffened Reinforcement within Reinforced earth retaining wall (보강토 옹벽 축조시 사용되는 보강재의 강성이 시공완료후 보강토 옹벽 구조체의 거동에 미치는 영향)

  • 박병영;유충식
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.06a
    • /
    • pp.1-11
    • /
    • 2001
  • This Paper presents the result of a parametric study on the behavior of stiffened grid reinforced segmental wall resting on non-yielding foundation. The parametric study was conducted using the nonlinear finite element analysis. In the finite element analysis, the step by step construction of the wall such as backfill, block reinforcement, block/backfill and soil/reinforcement interfaces were carefully modeled. The mechanical behavior of stiffened grid reinforced segmental walls was then investigated based on the result of analysis with emphasis on the effect of reinforcement stiffness on the behavior of the wall. The results of analysis indicate that the horizontal wall displacement decrease; with increasing the reinforcement stiffness at a decreasing rate, and that the horizontal stress at the back of the reinforced soil block does not much vary with the reinforcement stiffness. It is also revealed that the calculated maximum vertical stress at the base of the reinforced soil block agrees well with that based on the Meyerhof distribution and that the reinforcement and the connection force are considerably smaller than what might be expected based on the current design assumptions. The implications of the findings from this study to current design approaches were discussed in detail.

  • PDF

An Improved Method for Initial Shape Analysis of Cable-Stayed Bridges (사장교의 개선된 초기형상 해석법)

  • Kim, Moon Young;Kyung, Yong Soo;Lee, Jun Sok
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.2
    • /
    • pp.175-185
    • /
    • 2003
  • The extended tangent stiffness matrices and force-deformation relations of the elastic catenary element were initially derived through the addition of the unstrained length of cables to unknown nodal displacements. A beam-column element was then introduced to model the deck and pylon of cable-stayed bridges. The conventional geometric nonlinear analysis, initial force method, and TCUD method were summarized, with an effective method combining two methods presented to determine the initial shapes of cable-stayed bridges with dead loads. In this combined method, TCUD method was applied to eliminate vertical and horizontal displacements at cable-supported points of decks and on top of pylons, respectively. The initial force method was also adopted to eliminate horizontal and vertical displacements of decks and pylons, Finally, the accuracy and validity of the proposed combined method were demonstrated through numerical examples.