• 제목/요약/키워드: Vertical Wind Tunnel

검색결과 130건 처리시간 0.026초

Practical countermeasures for the aerodynamic performance of long-span cable-stayed bridges with open decks

  • Zhou, Rui;Yang, Yongxin;Ge, Yaojun;Mendis, Priyan;Mohotti, Damith
    • Wind and Structures
    • /
    • 제21권2호
    • /
    • pp.223-239
    • /
    • 2015
  • Open decks are a widely used deck configuration in long-span cable-stayed bridges; however, incorporating aerodynamic countermeasures are advisable to achieve better aerodynamic performance than a bluff body deck alone. A sectional model of an open deck cable-stayed bridge with a main span of 400 m was selected to conduct a series of wind tunnel tests. The influences of five practical aerodynamic countermeasures on flutter and vortex-induced vibration (VIV) performance were investigated and are presented in this paper. The results show that an aerodynamic shape selection procedure can be used to evaluate the flutter stability of decks with respect to different terrain types and structural parameters. In addition, the VIV performance of $\prod$-shaped girders for driving comfortableness and safety requirements were evaluated. Among these aerodynamic countermeasures, apron boards and wind fairings can improve the aerodynamic performance to some extent, while horizontal guide plates with 5% of the total deck width show a significant influence on the flutter stability and VIV. A wind fairing with an angle of $55^{\circ}C$ showed the best overall control effect but led to more lock-in regions of VIV. The combination of vertical stabilisers and airflow-depressing boards was found to be superior to other countermeasures and effectively boosted aerodynamic performance; specifically, vertical stabilisers significantly contribute to improving flutter stability and suppressing vertical VIV, while airflow-depressing boards are helpful in reducing torsional VIV.

편대비행에서 후방 항공기의 위치 안전성 분석 (Positional Stability Analysis of Trailing Aircraft in Formation Flight)

  • 조환기
    • 한국항공운항학회지
    • /
    • 제24권2호
    • /
    • pp.19-24
    • /
    • 2016
  • Positional stability analysis based on aerodynamic forces and induced moments of formation flight using two small aircraft models is presented. The aerodynamic force and moments of the trailing aircraft are analyzed in the aspect of flight stability. The induced moments with the change of local flow direction by wing-tip vortex from the leading aircraft can affect the flight positional stability of aircraft in closed formation flight. Aerodynamic forces and moments of trailing aircraft model are measured by 6-component internal balance at the 49 locations with vertical and lateral space between two aircraft models. Results are shown that the positional stability of trailing aircraft in formation flight can be analyzed by positional stability derivatives with vertical and lateral space. It is concluded that flying positions can be important factors for aircraft position stability due to induced aerodynamic force and moments with vertical and lateral spacing by the variation of flow pattern from the leading aircraft in formation flight.

불규칙한 교란을 받는 동적 시스템의 제어에 관한 실험적 연구 (Experimental Study on the Control for a Randomly Disturbing Dynamic System)

  • 이종복;조윤현;양인범;박성만;허훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1120-1125
    • /
    • 2007
  • Experimental study on the control of randomly disturbing system is conducted. External and internal disturbances are imposed to the system in combined manner. A vertical propeller system exposed horizontal weak turbulent air flow is chosen as an experimental model. The aim of the control system is to maintain the angular position of vertical propeller in parallel to air flow. Trajectory Tracking Stochastic Controller (TTSC) is designed to ensure system's stability while following system command. The Trajectory Tracking Stochastic Controller is composed of two controller, one is stochastic controller to suppress internal random noise and the other one is trajectory-tracking controller to follow the command having random noise. The proposed hybrid controller, TTSC, shows remarkable performance in pitch control of vertical propeller system in wind-tunnel test

  • PDF

New estimation methodology of six complex aerodynamic admittance functions

  • Han, Y.;Chen, Z.Q.;Hua, X.G.
    • Wind and Structures
    • /
    • 제13권3호
    • /
    • pp.293-307
    • /
    • 2010
  • This paper describes a new method for the estimation of six complex aerodynamic admittance functions. The aerodynamic admittance functions relate buffeting forces to the incoming wind turbulent components, of which the estimation accuracy affects the prediction accuracy of the buffeting response of long-span bridges. There should be two aerodynamic admittance functions corresponding to the longitudinal and vertical turbulent components, respectively, for each gust buffeting force. Therefore, there are six aerodynamic admittance functions in all for the three buffeting forces. Sears function is a complex theoretical expression for the aerodynamic admittance function for a thin airfoil. Similarly, the aerodynamic admittance functions for a bridge deck should also be complex functions. This paper presents a separated frequency-by-frequency method for estimating the six complex aerodynamic admittance functions. A new experimental methodology using an active turbulence generator is developed to measure simultaneously all the six complex aerodynamic admittance functions. Wind tunnel tests of a thin plate model and a streamlined bridge section model are conducted in turbulent flow. The six complex aerodynamic admittance functions, determined by the developed methodology are compared with the Sears functions and Davenport's formula.

훈련기 스핀모드 향상을 위한 수직 풍동시험 (The Vertical Wind Tunnel Test for Spin Mode Improvement of KTX-1)

  • 고준수;정인재
    • 제어로봇시스템학회논문지
    • /
    • 제11권3호
    • /
    • pp.228-232
    • /
    • 2005
  • This paper presents the efforts of the studies for improvement of spin characteristics of KTX-1 #02 through rotary balance test, forced oscillation test and spin mode analysis. During the full scale development design stage, we had fullfilled a lot of spin flight test, spin mode analysis. Based on all of the efforts, KTX-1 had been developed as a successful trainer with excellent spin characteristics.

축소형 무힌지 로터 시험에 관한 연구 (A Study on Experimental Test of a Small Scale Hingeless Rotor)

  • 김준호;송근웅;주진;석진영
    • 대한기계학회논문집A
    • /
    • 제35권12호
    • /
    • pp.1599-1606
    • /
    • 2011
  • 축소화된 사각형 및 패들형 블레이드, 금속재 및 복합재 허브와 같은 물리적인 축소형 형상의 변화에 따른 실물크기 무힌지 로터의 하중특성에 대하여 연구하였다. 이를 위하여 축소형 로터 모델을 활용한 정적시험, 지상 및 풍동시험을 수행하였다. 정적시험은 구조강성 및 관성특성, 고유진동수 및 감쇄율을 확인하기 위해 수행하였으며, 지상 및 풍동시험은 정지 및 전진 비행조건에서 안정성 및 공력특성을 확인하기 위해 수행하였다. 시험결과에 따르면, 동일한 조건에서 축소형 복합재 허브와 패들형 블레이드를 결합한 경우가 수직하중이 더 높았다. 축소형 복합재 허브와 패들형 블레이드가 결합된 형태가 금속재 허브의 결합된 형태보다 패들형 블레이드의 운동을 더 유연하게 구속하고 있음을 확인할 수 있었다.

Optimal Shape of Blunt Device for High Speed Vehicle

  • Rho, Joo-Hyun;Jeong, Seongmin;Kim, Kyuhong
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제17권3호
    • /
    • pp.285-295
    • /
    • 2016
  • A contact strip shape of a high speed train pantograph system was optimized with CFD to increase the aerodynamic performance and stability of contact force, and the results were validated by a wind tunnel test. For design of the optimal contact strip shape, a Kriging model and genetic algorithm were used to ensure the global search of the optimal point and reduce the computational cost. To enhance the performance and robustness of the contact strip for high speed pantograph, the drag coefficient and the fluctuation of the lift coefficient along the angle of attack were selected as design objectives. Aerodynamic forces were measured by a load cell and HWA (Hot Wire Anemometer) was used to measure the Strouhal number of wake flow. PIV (Particle Image Velocimetry) was adopted to visualize the flow fields. The optimized contact strip shape was shown a lower drag with smaller fluctuation of vertical lift force than the general shaped contact strip. And the acoustic noise source strength of the optimized contact strip was also reduced. Finally, the reduction amount of drag and noise was assessed when the optimized contact strip was applied to three dimensional pantograph system.

열적으로 성층화된 횡단류에 분출된 제트의 난류확산 거동(I) (Turbulent Dispersion Behavior of a Jet Issued into Thermally Stratified Cross Flows(I))

  • 김경천;김상기
    • 대한기계학회논문집B
    • /
    • 제23권2호
    • /
    • pp.218-225
    • /
    • 1999
  • Flow visualization study has been conducted to simulate the turbulent dispersion behavior of a crossflow jet physically under the conditions of various thermal stratification in a wind tunnel. A smoke jet with the constant ratio of the jet to freestream velocity is injected normally to the cross flow of the thermally stratified wind tunnel(TSWT) for flow visualization. The typical natures of the smoke dispersion under different thermal stratifications such as neutral, weakly stable, strongly stable, weakly unstable, strongly unstable and inversion layer are successfully reproduced in the TSWT. The Instantaneous velocity and temperature fluctuations are measured by using a cold and hot-wire combination probe. The time averaged dispersion behaviors, the centerline trajectories, the spreading angles and the virtual origins of the cross jet are deduced from the edge detected images with respect to the stability parameter. All the general characteristics of the turbulent dispersion behavior reveal that the definitely different dispersion mechanisms are inherent in both stable and unstable conditions. It is conjectured that the turbulent statistics obtained in the various stability conditions quantitatively demonstrate the vertical scalar flux plays a key role in the turbulent dispersion behavior.

Further results on the development of a novel VTOL aircraft, the Anuloid. Part I: Aerodynamics

  • Petrolo, Marco;Carrera, Erasmo;Iuso, Gaetano;Patek, Zdenek;Janda, Zdenek
    • Advances in aircraft and spacecraft science
    • /
    • 제4권4호
    • /
    • pp.401-419
    • /
    • 2017
  • This paper presents the main outcomes of the preliminary development of the Anuloid, an innovative disk-shaped VTOL aircraft. The Anuloid has three main features: lift is provided by a ducted fan powered by a turboshaft; control capabilities and anti-torque are due to a system of fixed and movable surfaces that are placed in the circular internal duct and the bottom portion of the aircraft; the Coanda effect is exploited to enable the control capabilities of such surfaces. In this paper, results from CFD analyses and wind tunnel tests are presented. Horizontal and vertical flights were considered, including accelerated flight. Particular attention was paid to the experimental analysis of the Coanda effect via a reduced scale 3D printed model. The results suggest that the Coanda effect is continuously present at the lower surface of the Anuloid and may be exploited for the control of the aircraft. Also, very complex 3D flows may develop around the aircraft.

Bimorph piezoelectric energy harvester structurally integrated on a trapezoidal plate

  • Avsar, Ahmet Levent;Sahin, Melin
    • Smart Structures and Systems
    • /
    • 제18권2호
    • /
    • pp.249-265
    • /
    • 2016
  • A bimorph piezoelectric energy harvester is developed for harvesting energy under the vortex induced vibration and it is integrated to a host structure of a trapezoidal plate without changing its passive dynamic properties. It is aimed to select trapezoidal plate as similar to a vertical fin-like structure which could be a part of an air vehicle. The designed energy harvester consists of an aluminum beam and two identical multi fiber composite (MFC) piezoelectric patches. In order to understand the dynamic characteristic of the trapezoidal plate, finite element analysis is performed and it is validated through an experimental study. The bimorph piezoelectric energy harvester is then integrated to the trapezoidal plate at the most convenient location with minimal structural displacement. The finite element model is constructed for the new combined structure in ANSYS Workbench 14.0 and the analyses performed on this particular model are then validated via experimental techniques. Finally, the energy harvesting performance of the bimorph piezoelectric energy harvester attached to the trapezoidal plate is also investigated through wind tunnel tests under the air load and the obtained results indicate that the system is a viable one for harvesting reasonable amount of energy.