• Title/Summary/Keyword: Vertical Well

Search Result 1,908, Processing Time 0.024 seconds

Earth pressure of vertical shaft considering arching effect in layered soils (다층지반에서의 아칭현상에 의한 수직갱 토압)

  • Lee, In-Mo;Moon, Hong-Pyo;Lee, Dea-Su;Kim, Kyung-Ryeol;Cho, Man-Sub
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.1
    • /
    • pp.49-62
    • /
    • 2007
  • A new earth pressure equation acting on the vertical shafts in cohesionless soils has been proposed by modifying the equations proposed by others. In order to verify the modified equation, model tests which can control uniform wall displacement with depth to radial direction were conducted. Model tests were performed with three different wall friction angles and two different relative densities. The measured values were larger than estimated values when assuming $\lambda=1$ ; smaller than those when assuming $\lambda=1-sin\phi$. The parameter, $\lambda$ is the ratio of tangential stress to vertical stress and is the most critical value in proposed equation. A method which can estimate the earth pressure on vertical shafts in layered soils is also proposed by reasonably assuming the failure surface of layered soils and using the modified equation. In order to verify the proposed method, in-situ measurement data have been collected from the three in-situ vertical shafts installed in layered soils. Most of earth pressures converted from measured data match reasonably well with estimated values using proposed method.

  • PDF

Vertical Handover Framework for Maritime Multi-band Networks (해상 멀티대역 네트워크를 위한 수직 핸드오버 프레임워크 설계)

  • Cho, A-Ra;Yun, Changho;Park, Jong-Won;Lim, Yong-Kon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.12
    • /
    • pp.2847-2856
    • /
    • 2014
  • It is necessary for maritime multi-band networks, which provide ships with diverse and seamless multimedia services, to perform vertical handover. As IEEE 802.21 WG has standardized vertical handover technologies for terrestrial wireless networks that do not consider VHF, HF, satellite networks, they cannot be directly applied to maritime multi-band networks. In this paper, the vertical handover framework for use in maritime mutlti-band networks is proposed, which includes the logical architecture, the communication reference model, re-defined handover primitives, and the handover process. The proposed vertical handover for maritime multi-band network can be applied in the ocean alone, as well as to the heterogeneous wireless networks which embrace both terrestrial and maritime networks.

Numerical analysis of vertical drains accelerated consolidation considering combined soil disturbance and visco-plastic behaviour

  • Azari, Babak;Fatahi, Behzad;Khabbaz, Hadi
    • Geomechanics and Engineering
    • /
    • v.8 no.2
    • /
    • pp.187-220
    • /
    • 2015
  • Soil disturbance induced by installation of mandrel driven vertical drains decreases the in situ horizontal hydraulic conductivity of the soil in the vicinity of the drains, decelerating the consolidation rate. According to available literature, several different profiles for the hydraulic conductivity variation with the radial distance from the vertical drain, influencing the excess pore water pressure dissipation rate, have been identified. In addition, it is well known that the visco-plastic properties of the soil also influence the excess pore water pressure dissipation rate and consequently the settlement rate. In this study, a numerical solution adopting an elastic visco-plastic model with nonlinear creep function incorporated in the consolidation equations has been developed to investigate the effects of disturbed zone properties on the time dependent behaviour of soft soil deposits improved with vertical drains and preloading. The employed elastic visco-plastic model is based on the framework of the modified Cam-Clay model capturing soil creep during excess pore water pressure dissipation. Besides, nonlinear variations of creep coefficient with stress and time and permeability variations during the consolidation process are considered. The predicted results have been compared with V$\ddot{a}$sby test fill measurements. According to the results, different variations of the hydraulic conductivity profile in the disturbed zone result in varying excess pore water pressure dissipation rate and consequently varying the effective vertical stresses in the soil profile. Thus, the creep coefficient and the creep strain limit are notably influenced resulting in significant changes in the predicted settlement rate.

Proper Regulation of the Cutoff System in Offshore Landfill Built on Clay Ground with Double Walls (점토지반에 이중벽체가 적용된 해상폐기물매립장의 적정 차수 기준)

  • Hwang, Woong-Ki;Kim, Hyang-Eun;Choi, Hoseong;Kim, Tae-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.8
    • /
    • pp.5-15
    • /
    • 2019
  • This study was conducted to propose a reasonable requirement regulation of cutoff barriers composed of bottom layer and vertical barrier of offshore landfill for the prevention of contaminant leakage. The bottom layer was composed of impermeable clay layer; vertical walls were composed of double walls; outer wall was composed of steel sheet pile which registed against outer force; cutoff vertical barrier took the role of inner wall. Seepage-advection-dispersion numerical analysis was conducted using SEEP/W and CTRAN/W programs under steady and unsteady flows. The results showed that the values calculated under steady flow showed higher migration of pollutant than those of unsteady flow. The values calculated under steady flow are more valid from a design point of view. Under steady flow and the bottom clay layer and when the vertical barrier are homogeneous and completely well installed, respectively, the minimum required cutoff regulations for hydraulic conductivity, thickness, and embedded depth of the bottom clay layer and vertical barrier were suggested.

CONTINUITY OF JORDAN *-HOMOMORPHISMS OF BANACH *-ALGEBRAS

  • Draghia, Dumitru D.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.30 no.2
    • /
    • pp.187-191
    • /
    • 1993
  • In this note we prove the following result: Let A be a complex Banach *-algebra with continuous involution and let B be an $A^{*}$-algebra./T(A) = B. Then T is continuous (Theorem 2). From above theorem some others results of special interest and some well-known results follow. (Corollaries 3,4,5,6 and 7). We close this note with some generalizations and some remarks (Theorems 8.9.10 and question). Throughout this note we consider only complex algebras. Let A and B be complex algebras. A linear mapping T from A into B is called jordan homomorphism if T( $x^{1}$) = (Tx)$^{2}$ for all x in A. A linear mapping T : A .rarw. B is called spectrally-contractive mapping if .rho.(Tx).leq..rho.(x) for all x in A, where .rho.(x) denotes spectral radius of element x. Any homomorphism algebra is a spectrally-contractive mapping. If A and B are *-algebras, then a homomorphism T : A.rarw.B is called *-homomorphism if (Th)$^{*}$=Th for all self-adjoint element h in A. Recall that a Banach *-algebras is a complex Banach algebra with an involution *. An $A^{*}$-algebra A is a Banach *-algebra having anauxiliary norm vertical bar . vertical bar which satisfies $B^{*}$-condition vertical bar $x^{*}$x vertical bar = vertical bar x vertical ba $r^{2}$(x in A). A Banach *-algebra whose norm is an algebra $B^{*}$-norm is called $B^{*}$-algebra. The *-semi-simple Banach *-algebras and the semi-simple hermitian Banach *-algebras are $A^{*}$-algebras. Also, $A^{*}$-algebras include $B^{*}$-algebras ( $C^{*}$-algebras). Recall that a semi-prime algebra is an algebra without nilpotents two-sided ideals non-zero. The class of semi-prime algebras includes the class of semi-prime algebras and the class of prime algebras. For all concepts and basic facts about Banach algebras we refer to [2] and [8].].er to [2] and [8].].

  • PDF

Numerical study on the influence of embedment footing and vertical load on lateral load sharing in piled raft foundations

  • Sommart Swasdi;Tanan Chub-Uppakarn;Thanakorn Chompoorat;Worathep Sae-Long
    • Geomechanics and Engineering
    • /
    • v.36 no.6
    • /
    • pp.545-561
    • /
    • 2024
  • Piled raft foundation has become widely used in the recent years because it can increase bearing capacity of foundation with control settlement. The design for a piled raft in terms vertical load and lateral load need to understands contribution load behavior to raft and pile in piled raft foundation system. The load-bearing behavior of the piled raft, especially concerning lateral loads, is highly complex and challenge to analyze. The complex mechanism of piled rafts can be clarified by using three dimensional (3-D) Finite Element Method (FEM). Therefore, this paper focuses on free-standing head pile group, on-ground piled raft, and embedded raft for the piled raft foundation systems. The lateral resistant of piled raft foundation was investigated in terms of relationship between vertical load, lateral load and displacement, as well as the lateral load sharing of the raft. The results show that both vertical load and raft position significantly impact the lateral load capacity of the piled raft, especially when the vertical load increases and the raft embeds into the soil. On the same condition of vertical settlement and lateral displacement, piled raft experiences a substantial demonstrates a higher capacity for lateral load sharing compared to the on-ground raft. Ultimately, regarding design considerations, the piled raft can reliably support lateral loads while exhibiting behavior within the elastic range, in which it is safe to use.

An analytical algorithm for assessing dynamic characteristics of a triple-tower double-cable suspension bridge

  • Wen-ming Zhang;Yu-peng Chen;Shi-han Wang;Xiao-fan Lu
    • Structural Engineering and Mechanics
    • /
    • v.90 no.4
    • /
    • pp.325-343
    • /
    • 2024
  • Triple-tower double-cable suspension bridges have increased confinement stiffness imposed by the main cable on the middle tower, which has bright application prospects. However, vertical bending and torsional vibrations of the double-cable and the girder are coupled in such bridges due to the hangers. In particular, the bending vibration of the towers in the longitudinal direction and torsional vibrations about the vertical axis influence the vertical bending and torsional vibrations of the stiffening girders, respectively. The conventional analytical algorithm for assessing the dynamic features of the suspension bridge is not directly applicable to this type of bridge. This study attempts to mitigate this problem by introducing an analytical algorithm for solving the triple-tower double-cable suspension bridge's natural frequencies and mode shapes. D'Alembert's principle is employed to construct the differential equations of the vertical bending and torsional vibrations of the stiffening girder continuum in each span. Vibrations of stiffening girders in each span are interrelated via the vibrations of the main cables and the bridge towers. On this basis, the natural frequencies and mode shapes are derived by separating variables. The proposed algorithm is then applied to an engineering example. The natural frequencies and mode shapes of vertical bending and torsional vibrations derived by the analytical algorithm agreed well with calculations via the finite element method. The fundamental frequency of vertical bending and first- and second-order torsion frequencies of double-cable suspension bridges are much higher than those of single-cable suspension bridges. The analytical algorithm has high computational efficiency and calculation accuracy, which can provide a reference for selecting appropriate structural parameters to meet the requirements of dynamics during the preliminary design.

Geotechnical Evaluation on the Application of Reactive Vertical Drainage Method (반응성연직배수공법의 적용에 대한 지반공학적 평가)

  • Na, Hyoung-Yun;Chae, Deokho;Oh, Myoung-Hak;Cho, Wanjei
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.7
    • /
    • pp.13-17
    • /
    • 2012
  • Recently, our ocean development paradigm is changing so that the development focus has been moved from the port facility developments to creating useful marine space. This paradigm accords well with the current green technology and helps the growth of service industries and the development from this paradigm can become a national land mark. Accordingly, the concept of creating marine waste landfill by the development of resource recycling technology has been introduced for eco-friendly space as an artificial island in future. Therefore, this study introduces the reactive vertical drainage method that is to pursue the purification of pollutants as well as stabilization of newly deposited soils in marine environments. To install the reactive vertical drainage piles for more effective feasibility and constructability, placements of drainage mid-layer are considered in the geotechnical viewpoint. Consolidation characteristics were evaluated by standard consolidation tests after several types of model test. As s result, the application of mid-layer drainage is strongly recommended in the reactive vertical drainage to quickly stabilize newly deposited soils. And vacuum consolidation method has better consolidation characteristic than vertical loading method in terms of the settlements predicted by additional stress for further use as an artificial island.

SPECTRAL ANALYSIS FOR THE CLASS OF INTEGRAL OPERATORS ARISING FROM WELL-POSED BOUNDARY VALUE PROBLEMS OF FINITE BEAM DEFLECTION ON ELASTIC FOUNDATION: CHARACTERISTIC EQUATION

  • Choi, Sung Woo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.1
    • /
    • pp.71-111
    • /
    • 2021
  • We consider the boundary value problem for the deflection of a finite beam on an elastic foundation subject to vertical loading. We construct a one-to-one correspondence �� from the set of equivalent well-posed two-point boundary conditions to gl(4, ℂ). Using ��, we derive eigenconditions for the integral operator ��M for each well-posed two-point boundary condition represented by M ∈ gl(4, 8, ℂ). Special features of our eigenconditions include; (1) they isolate the effect of the boundary condition M on Spec ��M, (2) they connect Spec ��M to Spec ����,α,k whose structure has been well understood. Using our eigenconditions, we show that, for each nonzero real λ ∉ Spec ����,α,k, there exists a real well-posed boundary condition M such that λ ∈ Spec ��M. This in particular shows that the integral operators ��M, arising from well-posed boundary conditions, may not be positive nor contractive in general, as opposed to ����,α,k.

Sensitivity of Simulated Water Temperature to Vertical Mixing Scheme and Water Turbidity in the Yellow Sea (수직 혼합 모수화 기법과 탁도에 따른 황해 수온 민감도 실험)

  • Kwak, Myeong-Taek;Seo, Gwang-Ho;Choi, Byoung-Ju;Kim, Chang-Sin;Cho, Yang-Ki
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.18 no.3
    • /
    • pp.111-121
    • /
    • 2013
  • Accurate prediction of sea water temperature has been emphasized to make precise local weather forecast and to understand change of ecosystem. The Yellow Sea, which has turbid water and strong tidal current, is an unique shallow marginal sea. It is essential to include the effects of the turbidity and the strong tidal mixing for the realistic simulation of temperature distribution in the Yellow Sea. Evaluation of ocean circulation model response to vertical mixing scheme and turbidity is primary objective of this study. Three-dimensional ocean circulation model(Regional Ocean Modeling System) was used to perform numerical simulations. Mellor- Yamada level 2.5 closure (M-Y) and K-Profile Parameterization (KPP) scheme were selected for vertical mixing parameterization in this study. Effect of Jerlov water type 1, 3 and 5 was also evaluated. The simulated temperature distribution was compared with the observed data by National Fisheries Research and Development Institute to estimate model's response to turbidity and vertical mixing schemes in the Yellow Sea. Simulations with M-Y vertical mixing scheme produced relatively stronger vertical mixing and warmer bottom temperature than the observation. KPP scheme produced weaker vertical mixing and did not well reproduce tidal mixing front along the coast. However, KPP scheme keeps bottom temperature closer to the observation. Consequently, numerical ocean circulation simulations with M-Y vertical mixing scheme tends to produce well mixed vertical temperature structure and that with KPP vertical mixing scheme tends to make stratified vertical temperature structure. When Jerlov water type is higher, sea surface temperature is high and sea bottom temperature is low because downward shortwave radiation is almost absorbed near the sea surface.