• Title/Summary/Keyword: Vertical Wafer

Search Result 83, Processing Time 0.02 seconds

Numerical Simulation of Particle Deposition on a Wafer Surface (웨이퍼 표면상의 입자침착에 관한 수치 시뮬레이션)

  • 명현국;박은성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2315-2328
    • /
    • 1993
  • The turbulence effect of particle deposition on a horizontal free-standing wafer in a vertical flow has been studied numerically by using the low-Reynolds-number k-.epsilon. turbulence model. For both the upper and lower surfaces of the wafer, predictions are made of the averaged particle deposition velocity and its radial distribution. Thus, it is now possible to obtain local information about the particle deposition on a free-standing wafer. The present result indicates that the particle deposition velocity on the lower surface of wafer is comparable to that on the upper one in the diffusion controlled deposition region in which the particle sizes are smaller than $0.1{\mu}m$. And it is found in this region that, compared to the laminar flow case, the averaged deposition velocity under the turbulent flow is about two times higher, and also that the local deposition velocity at the center of wafer is high equivalent to that the wafer edge.

Measurement of Particle Deposition Velocity toward a Horizontal Semiconductor Wafer Using a Wafer Surface Scanner (Wafer Surface Scanner를 이용한 반도체 웨이퍼상의 입자 침착속도의 측정)

  • Bae, G.N.;Park, S.O.;Lee, C.S.;Myong, H.K.;Shin, H.T.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.5 no.2
    • /
    • pp.130-140
    • /
    • 1993
  • Average particle deposition velocity toward a horizontal semiconductor wafer in vertical airflow is measured by a wafer surface scanner(PMS SAS-3600). Use of wafer surface scanner requires very short exposure time normally ranging from 10 to 30 minutes, and hence makes repetition of experiment much easier. Polystyrene latex (PSL) spheres of diameter between 0.2 and $1.0{\mu}m$ are used. The present range of particle sizes is very important in controlling particle deposition on a wafer surface in industrial applications. For the present experiment, convection, diffusion, and sedimentation comprise important agents for deposition mechanisms. To investigate confidence interval of experimental data, mean and standard deviation of average deposition velocities are obtained from more than ten data set for each PSL sphere size. It is found that the distribution of mean of average deposition velocities from the measurement agrees well with the predictions of Liu and Ahn(1987) and Emi et al.(1989).

  • PDF

Wafer-Level Three-Dimensional Monolithic Integration for Intelligent Wireless Terminals

  • Gutmann, R.J.;Zeng, A.Y.;Devarajan, S.;Lu, J.Q.;Rose, K.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.4 no.3
    • /
    • pp.196-203
    • /
    • 2004
  • A three-dimensional (3D) IC technology platform is presented for high-performance, low-cost heterogeneous integration of silicon ICs. The platform uses dielectric adhesive bonding of fully-processed wafer-to-wafer aligned ICs, followed by a three-step thinning process and copper damascene patterning to form inter-wafer interconnects. Daisy-chain inter-wafer via test structures and compatibility of the process steps with 130 nm CMOS sal devices and circuits indicate the viability of the process flow. Such 3D integration with through-die vias enables high functionality in intelligent wireless terminals, as vertical integration of processor, large memory, image sensors and RF/microwave transceivers can be achieved with silicon-based ICs (Si CMOS and/or SiGe BiCMOS). Two examples of such capability are highlighted: memory-intensive Si CMOS digital processors with large L2 caches and SiGe BiCMOS pipelined A/D converters. A comparison of wafer-level 3D integration 'lith system-on-a-chip (SoC) and system-in-a-package (SiP) implementations is presented.

Compliant Stage for Nano Patterning Machine (나노 패턴 장비용 컴플라이언스 스테이지)

  • Choi, Kee-Bong;Lee, Jae-Jong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1065-1068
    • /
    • 2003
  • The nano imprint process is one of the next generation lithography has been mentioned as one of major nanoreplication techniques because it is simple process, low cost, high replication fidelity and relatively high throughput. This process requires a surface contact between a template with patterns and a wafer on a stage. After contact, the vertical moving the template to the wafer causes some directional motions of the stage. Thus the stage must move according to the motions of the template to avoid the damage of the transferred patterns on the wafer. This study is to develop the wafer stage with a passive compliance to overcome the damage. This stage is designed with the concept like that it has a monolithic, symmetry and planar 6-DOF mechanism.

  • PDF

Quasi-Continuous Operation of 1.55- μm Vertical-Cavity Surface-Emitting Lasers by Wafer Fusion

  • Song, Dae-Sung;Song, Hyun-Woo;Kim, Chang-Kyu;Lee, Young-Hee;Kim, Jung-Su
    • Journal of the Optical Society of Korea
    • /
    • v.5 no.3
    • /
    • pp.83-89
    • /
    • 2001
  • Room temperature quasi-continuous operation is achieved near 1556 nm with threshold current as low as 2.2 mA from a 5.6-${\mu}{\textrm}{m}$ oxide-aperture vertical-cavity surface-emitting laser. Wafer fusion techniques are employed to combine the GaAs/AlGaAs mirror and the InP-based InGaAs/InGaAsP active layer. In this structure, an $Al_x/O_y$/GaAs distributed bragg reflector and intra-cavity contacts are used to reduce free carrier absorption.

A Novel z-axis Accelerometer Fabricated on a Single Silicon Substrate Using the Extended SBM Process (Extended SBM 공정을 이용하여 단일 실리콘 기판상에 제작된 새로운 z 축 가속도계)

  • Ko, Hyoung-Ho;Kim, Jong-Pal;Park, Sang-Jun;Kwak, Dong-Hun;Song, Tae-Yong;Cho, Dong-Il;Huh, Kun-Soo;Park, Jahng-Hyon
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.101-109
    • /
    • 2004
  • This paper presents a novel z-axis accelerometer with perfectly aligned vertical combs fabricated using the extended sacrificial bulk micromachining (extended SBM) process. The z-axis accelerometer is fabricated using only one (111) SOI wafer and two photo masks without wafer bonding or CMP processes as used by other research efforts that involve vertical combs. In our process, there is no misalignment in lateral gap between the upper and lower comb electrodes, because all critical dimensions including lateral gaps are defined using only one mask. The fabricated accelerometer has the structure thickness of $30{\mu}m$, the vertical offset of $12{\mu}m$, and lateral gap between electrodes of $4{\mu}m$. Torsional springs and asymmetric proof mass produce a vertical displacement when an external z-axis acceleration is applied, and capacitance change due to the vertical displacement of the comb is detected by charge-to-voltage converter. The signal-to-noise ratio of the modulated and demodulated output signal is 80 dB and 76.5 dB, respectively. The noise equivalent input acceleration resolution of the modulated and demodulated output signal is calculated to be $500{\mu}g$ and $748{\mu}g$. The scale factor and linearity of the accelerometer are measured to be 1.1 mV/g and 1.18% FSO, respectively.

Piezo-electrically Actuated Micro Corner Cube Retroreflector (CCR) for Free-space Optical Communication Applications

  • Lee, Duk-Hyun;Park, Jae-Y.
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.337-341
    • /
    • 2010
  • In this paper, an extremely low voltage operated micro corner cube retroreflector (CCR) was fabricated for free-space optical communication applications by using bulk silicon micromachining technologies. The CCR was comprised of an orthogonal vertical mirror and a horizontal actuated mirror. For low voltage operation, the horizontal actuated mirror was designed with two PZT cantilever actuators, torsional bars, hinges, and a mirror plate with a size of $400{\mu}m{\times}400{\mu}m$. In particular, the torsional bars and hinges were carefully simulated and designed to secure the flatness of the mirror plate by using a finite element method (FEM) simulator. The measured tilting angle was approximately $2^{\circ}$ at the applied voltage of 5 V. An orthogonal vertical mirror with an extremely smooth surface texture was fabricated using KOH wet etching and a double-SOI (silicon-on-insulator) wafer with a (110) silicon wafer. The fabricated orthogonal vertical mirror was comprised of four pairs of two mutually orthogonal flat mirrors with $400{\mu}m4 (length) $\times400{\mu}m$ (height) $\times30{\mu}m$ (thickness). The cross angles and surface roughness of the orthogonal vertical mirror were orthogonal, almost $90^{\circ}$ and 3.523 nm rms, respectively. The proposed CCR was completed by combining the orthogonal vertical and horizontal actuated mirrors. Data transmission and modulation at a frequency of 10 Hz was successfully demonstrated using the fabricated CCR at a distance of approximately 50 cm.

Fishing investigation of vertical bottom longline fisheries in sea mount of central northern Pacific (북태평양 중부 해산어장에 있어서 저층 선주낙의 어획실태)

  • Oh, Taeg-Yun;Kim, Yeong-Seung;Cho, Sam-Kwang;Kim, In-Ok;Choi, Seok-Gwan;Koh, Jeong-Rack;Yang, Won-Seok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.41 no.3
    • /
    • pp.188-198
    • /
    • 2005
  • This study was conducted to survey the catches of vertical bottom longline fisheries in the sea mount of central northern Pacific($30^{\circ}-42^{\circ}N$, $170^{\circ}-175^{\circ}E$), during the period of July 1 to August 25,2004 by commercial fishing vessel. The number of 57 test fishing was carried out in the central northern Pacific during 43 days and the total catches were 21,092.4kg as 19 fish species, CPUE/day and catches/day were 185 baskets and 490.5kg, respectively. Main fish species caught from the experimental fishing were Squalus mitsukurii (66.3%), Coelorhyrchus asperocephaius (11.7%) and Helicolenus avius (9.8%) and, average inside diameter for fish mouth was 4.0cm over. Catch ratio according to each fishing ground was the order of F, D, J, B and C. Catch ratio fur water depth was the order of 450-500m, 350-400m, 300-350m, 400-450m, 1000-1100m and 500-550m and, main species by water depth was Squalus mitsukurii for 300-400m, Etmopterus lucifer for 300-550m, Coelorhyrchus asperocephaius far 1,000m over. Catch ratio according to the kind of hooks was higher at the hook no.6 for Squalus mitsukurii and no. 5 for Etmopterus lucifer and, catch ratio by baits was higher at squid for Squalus mitsukurii, saury and eel for Helicolemus avius and saury for Etmopterus lucifer. Accordingly, it is thought that the extension of fishing hours is needed with the reduction of damage and loss for fishing gears during fishing operation.

Dislocation behavior in the ZnSe crystal (ZnSe 단결정내에서의 전위거동)

  • 이성국;박성수;김준홍;한재용;이상학
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.4
    • /
    • pp.560-566
    • /
    • 1997
  • Dislocation behavior in the ZnSe crystal grown by seeded vapor transport was investigated. Etch pit shape with the ZnSe plane and dislocation arrangement were shown. Also the variation of the dislocation density in the crystal was disclosed. The dislocation density along the lateral growth direction was not changed but the dislocation density along the vertical growth direction was reduced as the crystal grew. The average dislocation density of the grown crystal was $4{\times}10^4 /\textrm{cm}^2$.

  • PDF

Fabrication of Wafer-scale Polystyrene (2+1) Dimensional Photonic Crystal Multilayers Via the Layer-by-layer Scooping Transfer Technique

  • Do, Yeong-Rak;O, Jeong-Rok;Lee, Gyeong-Nam
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.11.1-11.1
    • /
    • 2011
  • We have developed a simple synthetic method for fabricating a wafer-scale colloidal crystal film of 2D crystals in a 1D stack based on a combination of two simple processes : the self-assembly of polystyrene (PS) nanospheres at the water-air interface and the layer-by-layer (LbL) scooping transfer technique. The main advantage of this approach is that it allows excellent control of the thickness (at a layer level) of the crystals and the formation of a vertical crack-free layer over a wafer-scale (4 inch). We investigate the optical and morphological properties of the PhC multilayers fabricated using various mono-sized colloidal crystals (250, 300, 350, 420, 580, 720, and 850 nm), and mixed binary colloidal crystals (300/350 and 250/350 nm).

  • PDF