• Title/Summary/Keyword: Vertical Stress

Search Result 1,174, Processing Time 0.032 seconds

Design Technique for Improving the Durability of Top Coating for Thermal Barrier of Gas Turbine (가스터빈의 열차폐용 탑코팅의 내구성 향상 설계기술)

  • Koo, Jae-Mean;Seok, Chang-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.1
    • /
    • pp.15-20
    • /
    • 2014
  • Thermal barrier coating (TBC) is used to protect the substrate and extend the operating life of the gas turbine for a power plant and an aircraft. The major cause of failure of such a coating is the spallation of coating, and it results from the thermal stress between top coating and bond coating. To improve the durability of TBC system, the dense vertical cracked (DVC) coating method to insert vertical cracks is applied to a gas turbine blade. In this study, a criterion for the design of vertical crack in the DVC coating was presented using the finite element analysis.

Expansion of Terzaghi Arching Formula to Consider an Arbitrarily Inclined Sliding Surface and Examination of its Effect

  • Son, Moorak
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.7
    • /
    • pp.27-33
    • /
    • 2016
  • This study expanded Terzaghi arching formula, which assumed a vertical surface as a sliding surface, to consider an arbitrarily inclined surface as a sliding surface and examined the effect of a sliding surface. This study firstly developed a formula to expand the existing Terzaghi arching formula to consider an inclined surface as well as a vertical surface as a sliding surface under the downward movement of a trap door. Using the expanded formula, the effect of excavation, ground, and surcharge conditions on a vertical stress was examined and the results were compared with them from Terzaghi arching formula. The comparison indicated that the induced vertical stress was highly affected by the angle of an inclined sliding surface and the degree of influence depended on the excavation, ground, and surcharge conditions. It is expected that the results from this study would provide a better understanding of various arching phenomenon in the future.

LCD Glass strain Simulation For Large Size Imprint Equipment (대면적 임프린트 장비를 위한 LCD Glass 변형 시뮬레이션 연구)

  • Song, Young-Joong;Shin, Dong-Hoon;Im, Hong-Jae;Jang, Si-Yeol;Lee, Kee-Sung;Jeong, Jay-Il
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1626-1631
    • /
    • 2007
  • The purpose of the study is to simulate the displacement of the LCD glass during process of a large size imprint. During this process, a small temperature variation makes thermal stress, which causes the horizontal variation of mold and glass. During alignment process to fix the LCD glass on a alignment stage, the vertical displacement is made by the absorption pressure and the shear stress. This study simulates the horizontal displacement of mold and glass due to temperature variation, the vertical displacement depending on the shape of absorption surface fixing the LCD glass in the alignment process, and the horizontal and vertical displacement which occurs in the LCD glass at the alignment process. Algor which is a FEM code for a framework simulation was applied. Temperature variation above ${\pm}$ $0.1^{\circ}C$ on mold and glass causes the horizontal displacement of 150nm due to thermal expansion. The vertical displacement due to the circular is ten times of the case of rectangular absorption nozzle. The displacement of the LCD glass in the alignment process is about 49nm.

  • PDF

Seismic Qualification Analysis of a Small Savonius Style Vertical Axis Wind Turbine (소형 사보니우스형 수직축 풍력발전기의 내진검증)

  • Choi, Young-Hyu;Kang, Min-Gyu;Park, Sung-Hoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.1
    • /
    • pp.122-129
    • /
    • 2018
  • This study conducted a seismic qualification analysis of small savonius style vertical axis wind turbine(VAWT) using finite element method(FEM). The modal analysis was performed on the wind turbine structure to check the occurrence of resonance caused by the rotation of gearbox and windmill blades. Next, it conducted a seismic response spectrum analysis due to horizontal and vertical seismic load of required response spectrum of safe shutdown earthquake with 5 % damping(RRS/SSE 5%) of KS C IEC 61400 and conducted a static analysis due to deadweight and wind load. The total maximum stress of the VAWT structure was calculated by adding the maximum stresses due to each load case using the square root of the sum of the squares(SRSS) method. Finally, the structural safety of the VAWT structure was verified by comparing the total maximum stress and the allowable stress.

A Study on Consolidation Characteristics in Marine Clay by Sand Drain (Sand Drain에 의한 점성토의 압밀 특성)

  • Chon, Yong-Baek;Gwak, Soo-Jeong
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.1
    • /
    • pp.83-89
    • /
    • 2004
  • The analysis about consolidation characteristic in soft clay has been depending one-dimension consolidation analysis. but, drain and undrain zone are explicated as homogeneous by consolidation behavior following consoli- dated settlementsoft in soft clay. 1) Established sand drain in soft clay in many types, and measured water content, unconfined compression strength, vertical stress, horizontal stress, vertical settlement, pore water pressure. 2) Arranged the result from the test and numerically explicated effective stress, total stress, and effective stress path at the drain and undrain zone. 3) We also analyzed and comparied elastic and elastic-plastic in soft clay using measured data. The result analyzed does not approach to a special theory, but, it is well in accord with the result of other investigator's study in the same condition.

  • PDF

The stress Analysis of Rotor shaft in a Vertical Impact Crusher (3D 유한요소법을 이용한 크러셔 샤프트 강도해석)

  • 유정열;박명균;박세만
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2004.05a
    • /
    • pp.211-220
    • /
    • 2004
  • The vertical impact crusher is the machine which could produce artifical sand similar to natural aggregates in the site of guarry and pits. FEM was used to analyse the stress and strength of the machine at high rotational speed. The test specimen was made from the same material as the shaft and tension tests were conducted. The Shaft under extreme conditions was analysed to determine maximum stress level and its location from the results. The maximum level of stress and its location could be predicted.

  • PDF

A Study on Character of Consolidation for Radial Drainage of Pohang배s Clay Ground (포항 점토 지반의 수평배수 압밀특성 연구)

  • Lee, Song;Jeon, Je-Sung;Kim, Won-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.685-692
    • /
    • 2000
  • Vertical drain used improvement soft clay is made of not only decreasing construction time but also increasing the ground strength during some decades. As, it is applied to improvement soft clay with vertical drain, it is designed by the result that is caused by oedemeter test ignored anisotropic of the ground related to consolidation conditions. When we are expected consolidation conditions, the most important factors is soil of compaction and water permeability. Above all, anisotropic of the ground permeability show the results which differ between vertical and radial drainage. Recently, We study for radial consolidation coefficient and permeability coefficient that utilized Rowe Cell Consolidation and permeability tester but, it dont use well because of not only a supply lack also difficulty of test. The paper experimented with searching anisotropic of the ground so there are Rowe Cell test, standard consolidation tester and modified standard consolidation test that have pohang's soft clay ground. Therefore, we find anisotropic of the ground and a tester of easy use more than before. We made a comparison test result between the devised tester and Rowe Cell tester, Also, we learned average degree of consolidation for partial penetrating vertical drains. We were found relations as effective stress-void and effective stress-permeability coefficient through those tests.

  • PDF

Effects of Minimum Horizontal Load on Structural Safety of System Supports (시스템 동바리 구조 안전성에 대한 최소 수평하중의 영향)

  • Chung, Dae Hyun;Kim, Gyeoung Yun;Won, Jeong-Hun
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.5
    • /
    • pp.37-43
    • /
    • 2015
  • This study examined the effects of the minimum horizontal load on the structural behaviors and safety of system supports. The minimum horizontal load was frequently ignored in the design of system supports even though the level of that load was specified in the code and guide in Korea such as 'Standard Specification in Temporary Construction' and 'Guide to Installation of Shores for a Concrete Bridge'. To examine the effects of considering the minimum horizontal load, the finite element analysis were performed for various system supports. By varying installing parameters of system supports such as the vertical member spacing, the installation height, and the thickness of slab, the maximum combined stress ratios were estimated to investigate the structural safety of system supports. The results showed similar axial stress in vertical members but an increase in bending stress with a consideration of the horizontal load. The combines stress ratios are remarkably increased due to the consideration of the horizontal load. Consequently, the system supports, which were initially estimated to be safe when only the vertical loads were considered, were changed to be unsafe in most cases by the effects of the both the vertical and horizontal stresses. Therefore, the minimum horizontal load following the code and the guide is an essential load that could control the structural safety of system supports.

A PHOTOELASTIC STRESS ANALYSIS IN MANDIBULAR DISTAL - EXTENSION REMOVABLE PARTIAL DENTURES WITH VARIOUSLY DESIGNEO INDIRECT RETAINERS (간접유치장치 설계변화에 따른 하악유리단 국소의치의 광탄성 응력분석)

  • Kang, Seung-Jong;Kay, Kee-Sung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.28 no.2
    • /
    • pp.183-197
    • /
    • 1990
  • The purpose of this study was to analyse the magnitude and distribution of stresses using a Photoelastic model from and distal - extension removable partial dentures With four designed indirect retainers. The designs of the indirect retainers were as follows : Design No. 1 : Aker's clasp on 1st bicuspid with no indirect retainer. Design No. 2 : Aker's clasp on 1st bicuspid with indirect retainer on canine. Design No. 3 : Extension of the reciprocal arm of Aker's clasp toward incisal rest on canine. Design No. 4 : Connection with the indirect retainer as in No. 2 and extension of reciprocal arm of Aker' s clasp. A photoelastic model was made of the epoxy resin(PL - 1) and hardner(PLH - 1) and coated with plastic cement -1(PC -1) at the lingual surface of the epoxy model and set with chrome - cobalt partial dentures. A unilateral vertical load of 10kg to the right 1st molar and a vertical load of 10kg to the middle portion of the metal bar crossing both the 1st molars of the right and left, were applied. With the use of specially designed jig, fixture; loading device and the reflective circular polariscope, we obtained the following results : 1. When the unilateral vertical load and the vertical load of the middle portion of the metal bar were applied, design No. 2, 3 and 4 exhibited the higher stress concentration at the root apices and their surrounding tissues of the primary and secondary abutment teeth. 2. When the unilateral vertical load applied to design No. 2,3 and 4 the root apices of the primary and secondary abutment teeth and their surrounding tissues and the nonloaded side of edentulous area exhibited and even stress distribution. 3. When the vertical load was applied, the stress concentration fringe in the primary and secondary abutment teeth was in the order of No. 1,4,2 and 3. 4. No.1 and 4 exhibited the higher distrorted stress concentration at the primary teeth and the edentulous area in the nonloaded side. 5. No.2 design reduced the stresses at the apices of the alveoli of the primary abutment teeth bilaterally as well as on the crest of the residual ridge on the nonloaded side. 6. No. 2 design exhibited the most favorable stress distribution.

  • PDF