• 제목/요약/키워드: Vertical Stress

검색결과 1,187건 처리시간 0.031초

편측 후방 치아 잔존시 의치 설계에 따른 지대치지지 조직과 잔존 치조제의 응력 분석에 관한 연구 (STRESS ANALYSIS AT SUPPORTING TISSUE OF ABUTMENT TEETH AND RESIDUAL RIDGE ACCORDING TO DENTURE DESIGN WITH REMAINING UNILATERAL POSTERIOR TEETH)

  • 안광호;정영완;진태호
    • 대한치과보철학회지
    • /
    • 제37권2호
    • /
    • pp.185-199
    • /
    • 1999
  • This study was peformed to investigate the distribution and magnitude of stress at supporting tissue of abutment teeth and residual ridge tissue with remaining unilateral posterior teeth. Four types of removable partial dentures that included clasp retained removable partial denture, attachment retained removable partial denture, telescopic removable partial denture, and swing-lock partial denture were designed, and strain gauge was used for stress analysis. Each prosthesis was subjected to simulated vertical and oblique load. The following conclusions were drawn from this study. 1. The clasp retained removable partial denture generally distributed simulated vertical force more evenly to the supporting structure. 2. The stress at buccal side of 1st premolar was the lowest in swing-lock partial denture and that was highest in attchment retained removable partial denture. The stress at lingual side of 1st premolar was the lowest in telescopic partial denture. 3. In clasp retained removable partial denture, stress was lower at load site and ridge crest at mid-line, but it was higher at 1st premolar area on vertical load. 4. In attachment removable partial denture, stresses at buccal side of 1st premolar. lingual side of 1st premolar on vertical load, and ridge crest at midline on oblique load were higher. 5. In telescopic removable partial denture, stress at lingual side of 1st premolar was the least in all removable partial dentures, but the stress at load site was higher. 6. In swing-lock removable partial denture, stress at buccal side of 1st premolar was the lowest, and stresses at load site and distal end of residual ridge crest were higher.

  • PDF

지표면 띠하중 재하에 따른 사질토지반 지중연직응력 증가량의 Boussinesq 이론값에 대한 실험적 고찰 (An Experimental Investigation of Boussinesq's Theoretical Value of Vertical Stress Increment in Sandy Soil Mass Caused by Surface Strip Loading)

  • 임종석
    • 한국지반공학회논문집
    • /
    • 제20권9호
    • /
    • pp.5-15
    • /
    • 2004
  • 정밀한 기초설계를 위하여 지중연직응력분포를 파악하는 것은 중요하다. 본 연구에서는 지표면 재하에 의한 사질토지반의 지중연직응력 증가량에 대한 Boussinesq의 이론을 고찰하기 위하여 일련의 실내모형시험을 수행하였으며 Boussinesq의 이론값을 실측값과 비교하였다. Boussinesq의 이론값은 깊이에 관계없이 기초판 하부에서는 실측값보다 작았다 기초판의 바깥부분에서는 기초폭의 1.0배의 깊이에서는 이론값은 실측값보다 컸으나 기초폭의 2.0배 및 3.0배의 깊이에서는 이론값과 실측값이 거의 비슷해지는 경향이었다. 가해진 단위면적당 하중에 대한 지중연직응력은 하중이 증가함에 따라 감소하였다. 이러한 경향들은 상대밀도나 기초폭에 관계없이 나타났다. Boussinesq의 이론을 이용할 때 이와 같은 결과를 감안하여 이론값을 보정하면 보다 정확한 값을 얻을 수 있을 것이다.

부분 무치악의 고정성 임플랜트 보철의 저위교합에 관한 3차원 유한요소법적 연구 (3-DIMENSIONAL FINITE ELEMENT ANALYSIS ON THE INFRAOCCLUSION OF FIXED IMPLANT PROSTHESIS FOR PARTIAL EDENTULISM)

  • 김인섭;최충국;정재헌
    • 대한치과보철학회지
    • /
    • 제34권3호
    • /
    • pp.632-649
    • /
    • 1996
  • The purpose of this study was to examine, by the method of 3-dimentional finite element analysis. how infraocclusion affected the stress distribution in surrounding bone and osseointegrated prosthesis. The 3-dimentional finite element mandibular models were made, in which the first and second molars were removed and the two osseointegrated implants were placed in the first and second molar sites and implant supported fixed prostheses were constructed. Analysis of equivalent stress and displacement induced by strong occlusion or infraocclusion was performed under vertical or inclined distributed loads. The results were as follows; 1. Under vertical load of 50N or 500N, the model in which infraocclusion had not been allowed showed greater stress on implants and the supporting bone than on natural teeth. 2. In the model in which infraocclusion of $30{\mu}m$ had been allowed, implant-prosthesis on the molars had no contact with opposing teeth under vertical load of 50N, However with the same allowed infraocclusion and the model under vertical load of 500N, implant prosthesis on the second molar had contact with opposing teeth, and stress distribution occured properly on natural teeth and implants. 3. Under $45^{\circ}$ inclined load, the model in which infraocclusion had not been allowed showed greater stress on implants and the supporting bone than on natural teeth. There was greater stress in the case of $45^{\circ}$ inclined load than in the case of vertical load. 4. Under $45^{\circ}$ inclined load of 50N or 500N, the model in which infraocclusion of $30{\mu}m$, had been allowed showed no occlusal contact on the implants and occlusal contact on the natural teeth. 5. In partially edentulous cases with implant supported prosthesis, we can prevent excessive load on implants by allowing infraocclusion.

  • PDF

Explicit Algebraic Stress/Heat-Flux 모형을 이용한 벽면가열이 높은 수직관 내의 열전달 감소에 대한 수치적 해석 (Assessment of Explicit Algebraic Stress/Heat-Flux Models for Reduction of Heat Transfer in a Vertical Pipe with Intense Heating)

  • 백성구;박승오
    • 대한기계학회논문집B
    • /
    • 제27권12호
    • /
    • pp.1724-1733
    • /
    • 2003
  • This paper assesses the prediction performance of explicit algebraic stress and heat-flux models for reduction of heat transfer coefficient in a strongly-heated vertical tube. Two explicit algebraic stress models and four explicit algebraic heat-flux models are selected for assessment. Eight combinations of explicit algebraic stress and heat-flux models are used in predicting the turbulent gas flows with intense heating, which yields the significant property-variation. The results showed that the two combinations of GS-AKN and WJ-mAKN predicted the Nusselt number and the axial wall temperature variations well and that the predictions of Nusselt number with WJ-combinations spread in a wider range than those with Gs-combinations. WJ is the explicit algebraic stress model of Wallin and Johansson and GS is the model of Gatski and Speziale and that AKN is the explicit heat-flux model of Abe, Kondoh and Nagano and mAKN is the modified AKN.

지표면 재하시 사질토 지반의 상대밀도에 따른 지중 연직응력분포 특성 (Characteristics of Vertical Stress Distribution in Soil according to the Relative Density of Sandy Soil in case of Surface Loading)

  • 임종석;이인형;정원중
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.422-426
    • /
    • 2003
  • Model soil tank tests were conducted in sandy soil to investigate the effect of surcharge strip loads on vertical stress distribution in soil. A total number of 6 tests were performed using one loading plate and two relative density(55%, 65%). The soil was considered as an elastic material, while no friction was allowed between the wall and the soil. Measured stress values were compared to predictions defined by Frohlich, Boussinesq and Westergaard. The comparison of measured values and predictions used the ratio between the soil pressure and load value. Results of this study demonstrated that experimental values were generally larger than predictions. The Frohlich analysis provided the best prediction, while the Boussinesq analysis and Westergaard theory not presented a satisfactional result.

  • PDF

보강상세 적용에 따른 강바닥판 피로강도 향상에 관한 해석적 연구 (Analytical Study on the Improvement of Fatigue Strength for the Orthotropic Steel Decks with Reinforced Structural Details)

  • 경갑수;박경진;김교훈;박혜연
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.839-844
    • /
    • 2007
  • In order to reduce resultant stress of the connection detail of longitudinal and rib and floor beam, in this study, the parameter studies for the reinforcement details as the bulk head and the vertical rib were preformed with FE analysis. As the result, it was shown that reinforcement detail with the bulk head plate in longitudinal rig reduced generally the principal stress at the connection detail, but the stress concentration of the weld toe parts occurring fatigue crack increased. However, it was known that the reinforcement detail with the vertical rib in the rib is more effective than the bulk head plate of the reduction stress concentration in the weld toe parts.

  • PDF

임프란트 고정체와 지대주 직경의 차이가 응력분포에 미치는 영향 (THE EFFECT OF THE DIFFERENCE OF THE IMPLANT FIXTURE AND ABUTMENT DIAMETER FOR STRESS DISTRIBUTION)

  • 정종원;이청희
    • 대한치과보철학회지
    • /
    • 제42권5호
    • /
    • pp.583-596
    • /
    • 2004
  • Statement of problem : Stress concentration on the neck bone affects the bone resorption, and finally the implant survival. Purpose: In order to examine the stress distribution on the neck bone and prosthesis abutment for implants, decreasing abutment sizes were used. Material and methods : Axisymmetric models were used to obtain the data required. These models were composed of 4mm implants with 3.4mm and 4mm abutments, 5mm implants with 3.4mm and 5mm abutments and 6mm implants with 3.4mm and 6mm abutments. All abutments were designed to received a 10mm high by 10mm diameter gold crown. Functional element analysis was used to obtain these results using data that consisted of 50 N vertical and 45 degree inclination forces. Results : 1. Changing the diameter of the abutment on the implant affects the effect of the inclination forces more than the effect of the vortical forces. 2. Changing the diameter of the abutment on the implant affect the effect of the inclination forces more than the effect of the vertical forces. 3. Experimentation showed that the larger diameter implants provided a decreased neck bone stress, whereas a larger diameter abutment provided a decrease marginal abutment stress. 4. Experimentation showed that the neck bone and abutment received more stress from inclination forces than vertical forces, Conclusions: By decreasing the size of the abutment on the implant we were able to diminishneck bone stress.

두개의 골유착성 임프란트를 이용한 하악 OVERDENTURE에서 ATTACHMENT 설계에 따른 임프란트 지지조직의 삼차원적 광탄성 응력분석 (A THREE DIMEMSIONAL PHOTOELASTIC STRESS ANALYSIS OF IMPLANT SUPPORTING BONE TISSUE ACCORDING TO DESIGN OF ATTACHMENTS USED FOR MANDIBULAR OVERDENTURE USING TWO OSSEOINTEGRATED IMPLANSTS)

  • 신규학;정장모;전영환;황희성
    • 대한치과보철학회지
    • /
    • 제34권1호
    • /
    • pp.31-69
    • /
    • 1996
  • The purpose of this investigation was to analyze stress distribution in implant supporting tissue according to different types of attachments such as combination bar attachment, Hader bar attachment, O-Ring attachment and Dal-Ro attachment that are used in mandibular overdenture by using two osseointegrated implants, to study the influence that POM IMC used in bar type attachment has in implant supporting tissue and compare the preceding analyses to find out an effective stress distribution method. Three dimensional photoelastic method was used to obtain the following results. (A) Analysis of stress distribution according to attachment type 1. Under vertical load condition, compressive stress was seen at implant supporting area of working side on all the photoelastic models but in Hader bar attachment tensional stress was seen at distal upper area of implant supporting area. Relatively Hader bar and O-Ring attachment showed even stress distribution pattern. 2. Under vertical load condition, compressive stress at implant apex area and tensional stress at implant lateral supporting area were seen at nonworking side of all models. 3. Under $25^{\circ}$ lateral load condition, general compressive stress was seen at working side implant supporting area in most of the models, especially at distal upper supporting area higher compressive stress concentration was seen in combination bar attachment and tensional stress concentration, in Hader bar attachment. 4. Under $25^{\circ}$ lateral load condition, compressive stress at implant apex area and tensional stress at implant lateral supporting area were seen at nonworking side of all models, except O-Ring model which showed compressive stress only. (B) Influence of POM IMC to stress distribution in bar type attachment 5. Under vertical load condition, better stress distribution pattern was seen at working side of combination bar and Hader bar attachment model using POM IMC. 6. Under vertical load condition, stress value was increased at nonworking side of combination bar attachment model using POM IMC and tendency of increasing compression was seen at nonworking side of Hader bar attachment model using POM IMC. 7. Under $25^{\circ}$ lateral load condition, better stress distribution pattern was seen at working side of combination bar attachment model using POM IMC but tendency of increasing stress was seen on working side of Hader bar attachment model using POM IMC. 8. Under $25^{\circ}$ lateral load condition, stress reduction was seen at nonworking side of combination bar attachment model using POM IMC but tendency of increasing stress was seen at nonworking side of Hader bar attachment model using POM IMC.

  • PDF

심벌캡 변화에 따른 심벌타입 압전 트랜스듀서의 발전특성 (Generating Characteristics of Cymbal Type Piezoelectric Transducer according to Change of Cymbal Cap)

  • 박충효;김종욱;정현호;정성수;김명호;박태곤
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.318-318
    • /
    • 2010
  • In this paper, we studied generating characteristic of cymbal type piezoelectric transducer according to change of cymbal cap. The transducer is composed of circular piezoelectric ceramic and two elastic bodies which are shaped as cymbal. Two elastic bodies are attached to upper and bottom of the ceramic. Principle of the transducer is to generate expanded displacement because vertical stress is transformed into horizontal stress by slope angle of elastic bodies. The transducer also has advantage of high durability by the angle of elastic bodies. In this study, each parameter was chosen, and then generating characteristics were analyzed by FEM program. The parameters were slope angle of cymbal cap (theta), cap height (h) and cap inner diameter(d). The model that had generating characteristic Of high voltage was chosen by results of the analysis. Besides, maximum vertical displacements according to change of vertical stress were analyzed by structural analysis in order to find out relation between the maximum vertical stress which can prevent from ceramic damage and conditions of each cap.

  • PDF

세로형 스틸 그레이팅의 응력과 변형에 관한 연구 (A Study on the Stress and Deformation of Vertical Steel grating)

  • 임경묵;임병철;박상흡
    • 한국산학기술학회논문지
    • /
    • 제17권2호
    • /
    • pp.214-219
    • /
    • 2016
  • 그레이팅은 건축, 토목에서 배수의 주목적으로 하는 구조물이다. 본 연구 에서는 가로형 그레이팅보다 유속에 대한 저항성을 감소시킨 구조인 세로형 그레이팅의 3가지 모델(35.3형, 40형, 43형)을 시뮬레이션하여, 응력 분포 및 변형에 대해 연구하고 최적의 격자 간격의 그레이팅을 설계함이 목적이다. 세로형과 가로형 그레이팅에 하중에 대한 최대 응력 및 변형을 비교 분석하여 보다 나은 제품을 확인하였다.