• Title/Summary/Keyword: Vertical Soil Characteristics

Search Result 237, Processing Time 0.028 seconds

Calculation method and application of natural frequency of integrated model considering track-beam-bearing-pier-pile cap-soil

  • Yulin Feng;Yaoyao Meng;Wenjie Guo;Lizhong Jiang;Wangbao Zhou
    • Steel and Composite Structures
    • /
    • v.49 no.1
    • /
    • pp.81-89
    • /
    • 2023
  • A simplified calculation method of natural vibration characteristics of high-speed railway multi-span bridge-longitudinal ballastless track system is proposed. The rail, track slab, base slab, main beam, bearing, pier, cap and pile foundation are taken into account, and the multi-span longitudinal ballastless track-beam-bearing-pier-cap-pile foundation integrated model (MBTIM) is established. The energy equation of each component of the MBTIM based on Timoshenko beam theory is constructed. Using the improved Fourier series, and the Rayleigh-Ritz method and Hamilton principle are combined to obtain the extremum of the total energy function. The simplified calculation formula of the natural vibration frequency of the MBTIM under the influence of vertical and longitudinal vibration is derived and verified by numerical methods. The influence law of the natural vibration frequency of the MBTIM is analyzed considering and not considering the participation of each component of the MBTIM, the damage of the track interlayer component and the stiffness change of each layer component. The results show that the error between the calculation results of the formula and the numerical method in this paper is less than 3%, which verifies the correctness of the method in this paper. The high-order frequency of the MBTIM is significantly affected considering the track, bridge pier, pile soil and pile cap, while considering the influence of pile cap on the low-order and high-order frequency of the MBTIM is large. The influence of component damage such as void beneath slab, mortar debonding and fastener failure on each order frequency of the MBTIM is basically the same, and the influence of component damage less than 10m on the first fourteen order frequency of the MBTIM is small. The bending stiffness of track slab and rail has no obvious influence on the natural frequency of the MBTIM, and the bending stiffness of main beam has influence on the natural frequency of the MBTIM. The bending stiffness of pier and base slab only has obvious influence on the high-order frequency of the MBTIM. The natural vibration characteristics of the MBTIM play an important guiding role in the safety analysis of high-speed train running, the damage detection of track-bridge structure and the seismic design of railway bridge.

Distribution Pattern of Vascular Plant Species along an Elevational Gradient in the Samga Area of Sobaeksan National Park (소백산국립공원 삼가지구 관속식물의 고도별 분포패턴)

  • Park, Hwan Joon;Ahn, Ji Hong;Seo, In soon;Lee, Sae Rom;Lee, Byoung Yoon;Kim, Jung Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.109 no.1
    • /
    • pp.1-22
    • /
    • 2020
  • In order to evaluate the vertical distribution and distributional pattern of vascular plants in the Samga district of Sobaeksan National Park, vascular plants were surveyed along a hiking trail from the Samga Tour Support Center to the top of a mountain. The elevation range was divided into 11 sections with 100 m intervals from 400 m to 1439 m above sea level.A total of 375 taxa were listed, comprising 92 families, 235 genera, 332 species, 3 subspecies, 37 varieties, and 3 forms. The pattern of species richness along the elevational gradient showed a reverse hump-shaped trend. The species distribution pattern was positively correlated with the soil exchangeable cations Ca2+ and Mg2+, soil pH, available phosphate, and the warmth index. Furthermore, slope, soil moisture content, and soil exchangeable cations were significantly correlated with species distribution. DCA grouped herb species into two groups. Stands of each section were sequentially arranged from 400 m to 1500 m along an altitudinal gradient. Soil moisture content, soil pH, soil K2+ and Na2+, available phosphate, and slope were significantly correlated with stand distribution. This study provides important data that could be useful for conservation and the sustainable use of biodiversity in the study area. In order to understand the ecological and environmental characteristics and distribution of plant species, it will be necessary to continuously develop relative studies with continuous monitoring.

A Study on the Liquefaction of Saturated Sand Layer under Oscillating Water Pressure (수압변동에 의한 포화 모래층의 액상화 연구)

  • Howoong Shon;Hyun-Chul Lim;Dae-Geun Lee
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.7 no.2
    • /
    • pp.59-65
    • /
    • 2000
  • The vertical distribution of pore water pressure in the highly saturated sand layer under the oscillating water pressure is studied theoretically and experimentally. By the experiments it is shown that the water pressure acting on the sand surface propagates into the sand layer with the damping in amplitude and the lag in phase, and that the liquefaction, the state that the effective stress becomes zero, occurs under certain conditions. These experimental results are explained fairly well by the same theoretical treatment as for the ground water problems in the elastic aquifer. The main characteristics of liquefaction clarified by the analysis are as follows: 1) The depth of the liquified layer increases with the increase of the amplitude and the frequency of the oscillating water pressure. 2) The increase of the volume of the water and the air in the layer increases the liquified depth. Especially the very small amount of the air affects the liquefaction significantly. 3) The liquified depth decrease rapidly with the increase of the compressibility coefficient of the sand. 4) In the range beyond a certain value of the permeability coefficient the liquified depth decrease with the increase of the coefficient.

  • PDF

Pullout Characteristics of Geogrid with Attached Passive Reinforcement (마찰돌기를 부착한 지오그리드의 인발특성 평가)

  • Moon, Hongduk;Yoo, Chulho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.11
    • /
    • pp.43-51
    • /
    • 2014
  • In this study, a series of pullout experiments were conducted on geogrid with attached passive reinforcement with respect to silt containments. Experiments were performed on man-made sand ground containing different silt of 0 %, 17 %, 35 % under various normal stresses 30 kPa, 60 kPa, 120 kPa respectively. The pullout test results showed that passive reinforcement increased the pullout strength over all silt contained condition and showed up to 20 % increases for same soil condition. The test results converted to the coefficient of interaction of pullout test to investigate the effect of reinforcement and the case of passive reinforcement showed 0.7~1.6 distribution depend on a silt contents. Therefore it is concluded that the overall length of geogrid can be reduced under the low vertical stress conditions.

Characteristics of Ground Movement in High Filling Abutment on Soft Ground (연약지반상 고성토 교대구간의 지반거동 특성)

  • Heo, Yol;Song, Seokcheol;Ahn, Kwangkuk;Oh, Seungtak;Seo, Sanggu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.7
    • /
    • pp.13-23
    • /
    • 2008
  • In this study, the centrifuge tests and numerical analyses were performed to investigate the lateral flow behavior and stability of abutment when high filling was applied on the soft ground improved by SCP. The centrifuge model tests and numerical analyses were fulfilled in the case of the back of abutment filled by EPS (case 1) and soil (case 2), and the potentiometer was installed on the abutment and fill to measure the vertical and horizontal displacement at the top of abutment. As a result of the centrifugal tests, the horizontal displacement of abutment in the case 1 was 1.4cm that is almost coincide with the results of numerical and satisfy the allowable standard. On the other hand, the horizontal displacement of abutment in the case 2 was 12 cm that is 18% greater than that of numerical analysis and exceed the allowable standard. As a result of analysis, the maximum horizontal displacement of pile was 1.26 cm in case 1 that satisfies the criterion of allowable horizontal displacement (1.5 cm). In contrast, the maximum horizontal displacement of pile was 1.005 m in case 2 that greatly exceeds the allowable horizontal displacement.

  • PDF

Pipe Stiffness Prediction of GRP Flexible Pipe (GRP 연성관의 관강성 예측)

  • Lee, Young-Geun;Kim, Sun-Hee;Park, Joon-Seok;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.3
    • /
    • pp.18-24
    • /
    • 2011
  • In this paper, we present the load-deflection behavior of GRP pipes. GRP buried pipes are widely used in construction in the advantage of their superior mechanical and physical characteristics such as high chemical resistance, high corrosion resistance, right weight, smooth surface of the pipe, and cost effectiveness from soil-structure interaction. To design flexible pipes to be buried underground, it should be based on the ASTM D2412(2010). When applying ASTM D 2412(2010) to the design, pipe stiffness(PS) must be predetermined by the parallel-plate test which requires tedious and laborious working process. To overcome such problems, the finite element simulations for finding the load-deflection behavior of the GRP flexible pipes is installed at UTM testing machine. In the finite element simulations, basic data, such as the modulus of elasticity of the material and cross-sectional dimension, is used. From the investigation, we found that the difference between experimental result and analytical prediction is less than 15% when the pipe deflected 3% and 5% of its vertical diameter although the pipe material is not uniform across the cross-section.

The Garden Ponds of Baekje and Asuka (백제와 아스카(飛鳥)의 원지구성(園池構成))

  • Baik, Ji Soung;Kim, Jin Seung
    • Journal of Environmental Science International
    • /
    • v.27 no.2
    • /
    • pp.123-133
    • /
    • 2018
  • The historical exchanges between the Republic of Korea and Japan have broadly occurred, in terms of both political and cultural aspects, from ancient to modern times. Regarding ancient gardening culture, in particular, Asuka developed gardens with the gardening techniques passed down by the Baekje people. The development of the basic form of a garden pond along with its characteristics, established through such exchanges, is suggested by investigating its components through analysis of data from the gardens of Baekje and Asuka. In terms of the garden pond structure, homogeneity was confirmed between Baekje and Asuka, with a linear rectangular form as the basic design. In addition, the vertical construction technique was used by both ancient kingdoms. In terms of the types of stone used in building the shore of the garden pond, Baekje used diverse types such as natural stone, crushed stone, and cut stone. In contrast, rounded river stone was used by Asuka. Regarding the floor of the garden pond, Baekje used soil, which enabled the planting of lotus flowers. In contrast, Asuka used stones to pave pond floors, which made the growth of plants impossible. In terms of layout, Baekje used ornamental stones for pond landscaping, while Asuka used manmade island and water intake facilities in their pond construction. The effects of Baekje's garden culture on Asuka's garden building can be seen from its influence on the form of the garden pond and shore construction style. In terms of the construction of the garden pond's shore with the same stones and the stone flooring, the garden ponds of the Asuka Kingdom reveal technically unified and refined aspects.

Identification of Pisolithus tinctorius from GNU Campus

  • Han, Ki-Soo;Lee, Jung-Han;Kwon, Young-Sang;Bae, Dong-Won;Kim, Hee-Kyu
    • Journal of agriculture & life science
    • /
    • v.43 no.4
    • /
    • pp.33-36
    • /
    • 2009
  • Globose to clavate base-ball sized, pear shaped, fruiting bodies were found under the Himalayan cedar, Cedrus deodora at less fertile and poor sandy poor soil in the campus of Gyeongsang National University in Jinju, Korea. The fruiting body was at first, round to club-shaped, usually with a narrow, rooting base with yellowish rhizomorphs attached to it and lack a volva and a sterile base. The peridium of fruiting body was tough and crusty. The peridioles were white pea-like capsules in a blackish matrix. The color change to darker tints of brown at the top of the exterior peridium reflected the gradual ripening of the interior gleba and peridioles, which proceeded from the top downward to become a mass of spore dust, appearing as cinnamon brown at the apex of the vertical section. At around this stage, the peridium cracked open linearly, exposing the gleba with powdery spores mass released from overmatured peridioles. Spores were more or less round, warty or spiny, 10 to $12{\mu}m$; globose, cinnamon brown in powdery mass, with spines up to $2{\mu}m$ long. The thin peridium ruptured further in response to the disintegration of the peridioles, releasing the powdery spores, which proceeded until whole fruiting body disappeared leaving the dry spore dust coats in the vicinity. The absence of a capillitium is a distinctive characteristic that distinguishes the specimen from other puff-ball fungi and from most of earthballs. Based on the above characteristics, the specimen was identified as Poslithus tinctorius.

Designing an innovative support system in loess tunnel

  • Wang, Zhichao;Xie, Yuan;Lai, Jinxing;Xie, Yongli;Su, Xulin;Shi, Yufeng;Guo, Chunxia
    • Geomechanics and Engineering
    • /
    • v.24 no.3
    • /
    • pp.253-266
    • /
    • 2021
  • The sufficient early strength of primary support is crucial for stabilizing the surroundings, especially for the tunnels constructed in soil. This paper introduces the Steel-Concrete Composite Support System (SCCS), a new support with high bearing capacity and flexible, rapid construction. The bearing characteristics and construction performance of SCCS were systematically studied using a three-dimensional numerical model. A sensitivity analysis was also performed. It was found that the stress of a π-shaped steel arch decreased with an increase in the thickness of the wall, and increased linearly with an increase in the rate of stress release. In the horizontal direction of the arch section, the nodal stresses of the crown and the shoulder gradually increased in longitudinally, and in the vertical direction, the nodal stresses gradually decreased from top to bottom. The stress distribution at the waist, however, was opposite to that at the crown and the shoulder. By analyzing the stress of the arch section under different installation gaps, the sectional stress evolution was found to have a step-growth trend at the crown and shoulder. The stress evolution at the waist is more likely to have a two-stage growth trend: a slow growth stage and a fast growth stage. The maximum tensile and compressive stresses of the secondary lining supported by SCCS were reduced on average by 38.0% and 49.0%, respectively, compared with the traditional support. The findings can provide a reference for the supporting technology in tunnels driven in loess.

Seismic analysis and performance for stone pagoda structure under Gyeongju earthquake in Korea

  • Kim, Ho-Soo;Kim, Dong-Kwan;Jeon, Geon-Woo
    • Earthquakes and Structures
    • /
    • v.21 no.5
    • /
    • pp.531-549
    • /
    • 2021
  • Analytical models were developed and seismic behaviors were analyzed for a three-story stone pagoda at the Cheollyongsa temple site, which was damaged by the Gyeongju earthquake of 2016. Both finite and discrete element modeling were used and the analysis results were compared to the actual earthquake damage. Vulnerable parts of stone pagoda structure were identified and their seismic behaviors via sliding, rocking, and risk analyses were verified. In finite and discrete element analyses, the 3F main body stone was displaced uniaxially by 60 and 80 mm, respectively, similar to the actual displacement of 90 mm resulting from the earthquake. Considering various input conditions such as uniaxial excitation and soil-structure interaction, as well as seismic components and the distance from the epicenter, both models yielded reasonable and applicable results. The Gyeongju earthquake exhibited extreme short-period characteristics; thus, short-period structures such as stone pagodas were seriously damaged. In addition, we found that sliding occurred in the upper parts because the vertical load was low, but rocking predominated in the lower parts because most structural members were slender. The third-floor main body and roof stones were particularly vulnerable because some damage occurred when the sliding and rocking limits were exceeded. Risk analysis revealed that the probability of collapse was minimal at 0.1 g, but exceeded 80% at above 0.3 g. The collapse risks at an earthquake peak ground acceleration of 0.154 g at the immediate occupancy, life safety, and collapse prevention levels were 90%, 52%, and 6% respectively. When the actual damage was compared with the risk analysis, the stone pagoda retained earthquake-resistant performance at the life safety level.