• Title/Summary/Keyword: Vertical Smart Farm

Search Result 5, Processing Time 0.018 seconds

Types of Vertical Smart Farms and Awareness of their use in Korean Cities Types and Feasibility Analysis of Vertical Smart Farms in Korean Cities

  • Heo, Han Kyul;Lee, Eunseok
    • Journal of People, Plants, and Environment
    • /
    • v.24 no.3
    • /
    • pp.257-266
    • /
    • 2021
  • Background and objective: Vertical smart farm (VSF) is an alternative that contributes to solving various problems such as climate change and food shortage. This study focused on the types and awareness of VSF to introduce and diffuse VSF. We aimed to investigate the types of VSF and citizens' awareness on VSF. We analyzed 1) where the smart farm technology could be implemented on a building; 2) what citizens think about VSF; and 3) suggested what is most necessary for the introduction and diffusion of VSF in the future based on citizens' perception. Methods: VSF types were investigated through case studies on VSF in Korea and overseas. Citizens' perception on VSF was investigated through a questionnaire survey. A statistical analysis was conducted with the survey results for implications of the introduction and diffusion of VSF. Results: Four types of VSF were derived: rooftop farms, facade farms, indoor farms, and farms using the whole building. The survey showed that 29.2%, 27.8%, and 22.2% of respondents knew well about urban agriculture, smart farms, and vertical smart farms, respectively. Respondents answered that improving awareness is the most important factor to introduce VSF. According to the statistical analysis, it was determined that education and promotion of the necessity of VSF would be important to diffuse the VSF. Conclusion: VSF can be a solution to a variety of problems we face. The results of this study suggest a direction for the introduction and diffusion of VSF. In order to introduce VSF in the future, additional studies must be conducted on the legal system.

Development of Building System for Achieving an Optimal Growth Environment in a Vertical Smart Farm (수직형 스마트 팜의 적정 생육환경 조성을 위한 건축 시스템 개발 - 수직형 스마트 팜에 최적화된 내부 공기 균일성 향상에 대한 연구 -)

  • Kim, Handon;Lee, Jeonga;Choi, Seun;Jang, Hyounseung;Kim, Jimin
    • Korean Journal of Construction Engineering and Management
    • /
    • v.22 no.4
    • /
    • pp.3-10
    • /
    • 2021
  • According to the IPCC, humans are influencing the climate system. Such changes in the climate system can cause problems in the supply of food ingredients in the agricultural field by changing the existing growing environment. To solve this problem, vertical farms can be a good alternative for a stable supply of food ingredients. Although the vertical smart farm pays close attention to maintaining and managing the growing environment of crops, it is difficult to uniformly implement temperature, humidity, illumination, oxygen, and carbon dioxide concentrations in the building space. As a result of conducting computational fluid dynamics analysis to ensure air uniformity, a remarkable result is that it is advantageous to continuously spray suitable carbon dioxide CO2 concentrations for a long period of time for air uniformity in a vertical smart farm. Through this result, it is possible to efficiently plan a growing environment system optimized for a vertical smart farm. Based on this study, if efficient crops are produced by creating an optimized growing environment for vertical smart farms, it will be able to contribute to the development of the agricultural field.

Study of Implementation as Digital Twin Framework for Vertical Smart Farm (식물공장 적용 디지털 트윈 프레임워크 설계 연구)

  • Ko, Tae Hwan;Noe, Seok Bong;Noh, Dong Hee;Choi, Ju Hwan;Lim, Tae Beom
    • Journal of Broadcast Engineering
    • /
    • v.26 no.4
    • /
    • pp.377-389
    • /
    • 2021
  • This paper presents a framework design of a digital twin system for a vertical smart farm. In this paper, a framework of digital twin systems establishes three factors: 1) Client 2) IoT gateway, and 3) Server. Especially, IoT gateway was developed using the Eclipse Ditto, which has been commonly used as the standard open hardware platform for digital twin. In particular, each factor is communicating with the client, IoT gateway, and server by defining the message sequence such as initialization and data transmission. In this paper, we describe the digital twin technology trend and major platform. The proposed design has been tested in a testbed of the lab-scale vertical smart-farm. The sensor data is received from 1 Jan to 31 Dec 2020. In this paper, a prototype digital twin system that collects environment and control data through a raspberry pi in a plant factory and visualizes it in a virtual environment was developed.

Indoor Temperature Analysis by Point According to Facility Operation of IoT-based Vertical Smart Farm (IoT 기반 수직형 스마트 팜의 설비운영에 따른 지점별 실내온도분석)

  • Kim, Handon;Jung, Mincheol;Oh, Donggeun;Cho, Hyunsang;Choi, Seun;Jang, Hyounseung;Kim, Jimin
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.1
    • /
    • pp.98-105
    • /
    • 2022
  • It is essential for vertical smart farms that artificially grow crops in an enclosed space to properly utilize air environment facilities to create an appropriate growth environment. However, domestic vertical smart farm companies are creating a growing environment by relying on empirical data rather than systematic methods. Using IoT to create a growing environment based on systematic and precise monitoring can increase crop production yield and maximize profitability. This study aims to construct a monitoring system using IoT and to analyze the cause by demonstrating the imbalance of temperature environment, which is a significant factor in crop cultivation. 1) The horizontal temperature distribution of the multi-layer shelf was measured with different operating methods of LED and air conditioner. As a result, there was a temperature difference of "up to 1.7℃" between the sensors. 2) As a result of measuring the vertical temperature distribution, the temperature difference was "up to 6.3℃". In order to reduce this temperature gap, a strategy for proper arrangement and operation of air conditioning equipment is required.

The influence of sea surface temperature for vertical extreme wind shear change and its relation to the atmospheric stability at coastal area

  • Geonhwa Ryu;Young-Gon Kim;Dongjin Kim;Sang-Man Kim;Min Je Kim;Wonbae Jeon;Chae-Joo Moon
    • Wind and Structures
    • /
    • v.36 no.3
    • /
    • pp.201-213
    • /
    • 2023
  • In this study, the effect of sea surface temperature (SST) on the distribution of vertical wind speed in the atmospheric boundary layer of coastal areas was analyzed. In general, coastal areas are known to be more susceptible to various meteorological factors than inland areas due to interannual changes in sea surface temperature. Therefore, the purpose of this study is to analyze the relationship between sea surface temperature (ERA5) and wind resource data based on the meteorological mast of Høvsøre, the test bed area of the onshore wind farm in the coastal area of Denmark. In addition, the possibility of coastal disasters caused by abnormal vertical wind shear due to changes in sea surface temperature was also analyzed. According to the analysis of the correlation between the wind resource data at met mast and the sea surface temperature by ERA5, the wind speed from the sea and the vertical wind shear are stronger than from the inland, and are vulnerable to seasonal sea surface temperature fluctuations. In particular, the abnormal vertical wind shear, in which only the lower wind speed was strengthened and appeared in the form of a nose, mainly appeared in winter when the atmosphere was near-neutral or stable, and all occurred when the wind blows from the sea. This phenomenon usually occurred when there was a sudden change in sea surface temperature within a short period of time.