• Title/Summary/Keyword: Vertical Moving System

Search Result 127, Processing Time 0.047 seconds

Trolley Adaptability of Membrane Retractable Roof Under Vertical Load Considering Friction of Various Materials (다양한 재료의 마찰계수를 고려한 중소규모 연성 개폐식 트롤리의 수직하중에 대한 적용성 평가)

  • Kim, Yun-Jin;Lee, Seung-Jae;Lee, Yu-Han;Hwang, Kyung-Ju
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.4
    • /
    • pp.83-89
    • /
    • 2016
  • Middle size of membrane retractable roof is under 25m span which consists of various moving systems. Trolley is the system that leads the membrane to parking place, transferring the load from the membrane to structural cable. When membrane closes roof completely, thus, structural behavior of trolley, which may contain various material with different friction coefficients, should be investigated by vertical load. Nummerical simulation of trolley prototypes, in this research, was performed by incrementation of vertical load. Consequently, this paper studied proper friction characteristics and provided the effective inner materials of trolley.

Dynamic response of steel-concrete composite bridges loaded by high-speed train

  • Podworna, Monika
    • Structural Engineering and Mechanics
    • /
    • v.62 no.2
    • /
    • pp.179-196
    • /
    • 2017
  • The paper focuses on dynamic analyses of a series of simply-supported symmetric composite steel-concrete bridges loaded by an ICE-3 train moving at high speeds up to 300 km/h. The series includes five bridges with span lengths ranging from 15 m to 27 m, with repeatable geometry of the superstructures. The objects, designed according to Polish standards valid from 1980s to 2010, are modelled on the bridges serviced on the Central Main Line in Poland since 1980s. The advanced, two-dimensional, physically nonlinear model of the bridge-track structure-high-speed train system takes into account unilateral nonlinear wheel-rail contact according to Hertz's theory and random vertical track irregularities equal for both rails. The analyses are focused on the influence of random track irregularities on dynamic response of composite steel-concrete bridges loaded by an ICE-3 train. It has been pointed out that certain restrictions on the train speed and on vertical track irregularities should be imposed.

Vertical Vibration Control of High Speed Train-Steel Arch Bridge using Vibration Control Device (진동제어장치를 이용한 고속열차-강아치교의 수직진동제어)

  • 고현무;강수창;유상희;옥승용;추진교
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.360-367
    • /
    • 2003
  • This paper presents passive vibration control method to suppress train-induced vibration on a long-span steel arch bridge. According to the train load frequency analysis, undesirable resonance of a bridge will occur when the impact frequency of the train axles are close to the modal frequencies of the bridge. Because the first mode shape of the long-span steel arch bridge may take anti-symmetric shape along the bridge direction, however, the optimal control configuration for resonance suppression should be considered carefully In this study, bridge-vehicle element is used to estimate the bridge-train interaction precisely. From the numerical simulation of a loom steel arch bridge under TGV-K train loading, dynamic magnification influences are evaluated according to vehicle moving speed and efficient control system with passive dampers are presented in order to diminish the vertical displacement and vertical acceleration.

  • PDF

people counting system using single camera (카메라영상을 이용한 people counting system)

  • Jeong, Ha-Wook;Chang, Hyung-Jin;Baek, Young-Min;Kim, Soo-Wan;Choi, Jin-Young
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.172-174
    • /
    • 2009
  • This paper describes an implementation method for the 'People Counting System' which detects and tracks moving people using a fixed single camera. This system proposes the method of improving performances by compensating weakness of existing algorithm. For increasing effect of detection, this system uses Single Gaussian Background Modeling which is more robust at noise and has adaptiveness. It minimizes unnecessarily detected area that is a limitation of the detecting method by using the background differences. And this system prevents additional detecting problems by removing shadow. Also, This system solves the problems of segmentation and union of people by using a new method. This method can work appropriately, if the angle of camera would not strictly vertical or the direction of shadow were lopsided. Also, by using integration System, it can solve a number of special cases as many as possible. For example, if the system fails to tracking, it will detect the object again and will make it possible to count moving people.

  • PDF

Current Status and Development Direction of Advanced Air Mobility ICTs (Advanced Air Mobility ICT 기술 현황 및 발전 방향)

  • B.J. Oh;M.S. Lee;B.K. Kim;Y.J. Jeong;Y.J. Lim;C.D. Lim
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.3
    • /
    • pp.1-10
    • /
    • 2023
  • In this study, the status of global advanced air mobility (AAM) was investigated to derive information and communications technologies (ICTs) that should be prepared according to directions of domestic AAM development. AAM is an urban air traffic system for moving from city to city by electric vertical take-off and landing or personal aircraft. It is expected to establish a three-dimensional air traffic system that can solve ground traffic congestion caused by the rapid global urbanization. With the full-scale commercialization of AAM solutions, high-density air traffic is expected, and with the advent of the personal air vehicle (PAV), the flight space usage is expected to expand. Therefore, it is necessary to develop a safe AAM service through early research on core ICTs for autonomous flight.

A Study on the efficient control of an elastic manipulator moving in a vertical plane (수직면에서 작동하는 탄성 매니퓰레이터의 효율적인 제어에 관한 연구)

  • 강준원;이중섭;권혁조;오재윤;정재욱
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.318-322
    • /
    • 1996
  • This paper presents a technique to control a robot which has a flexible manipulator moving in a vertical plane. The flexible manipulator is modeled as an Euler-Bernoulli beam. Elastic deformation is represented using the assumed modes method. A comparison function which satisfies all geometric and natural boundary conditions of a cantilever beam with an end mass is used as an assumed mode shape. Lagrange's equation is utilized for the development of a discretized model. A control algorithm is developed using a simple PID control technique. The proportional, integral and derivative control gains are determined based on the dominant pole placement method and tuned to show no overshoot and having a short settling time. The effectiveness of the developed control scheme is showed experimentally. In the position control experiment, three different end masses are used. The experimental results shows little overshoot, no steady state error, and less than 2.5 second settling time in case of having an end mass which is equivalent to 45% of the total system weight. Also the residual vibration of the end point is effectively controlled.

  • PDF

Active Vibration Control System Using Electromagnet Actuator (전자기 액츄애이터를 이용한 능동 진동제어시스템)

  • Lee, Joo-Hoon;Jeon, Jeong-Woo;Hwang, Don-Ha;Kang, Dong-Sik;Choi, Young-Kiu
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2809-2811
    • /
    • 2005
  • In this paper, we address an active vibration control system, which suppresses the vibration engaged by magnetically levitated stage. The stage system consists of a levitating platen with four permanent magnetic linear synchronous motors in parallel. Each motor generates vertical force for suspension against gravity and propulsion force horizontally as well. This stage can generate six degrees of freedom motion via the vertical and horizontal forces. In the stage system, which represents the settling-time critical system, the motion of the platen vibrates mechanically. We designed an active vibration control system for suppressing vibration due to the stage moving. The command feedforward with inertial feedback algorithm is used for solving stage system's critical problems. The components of the active vibration control system are accelerometers for detecting stage tables's vibrations, a digital controller with high precise signal converters, and electromagnetic actuators.

  • PDF

A Design Of Active Vibration Control System For Precise Maglev Stage (초정밀 자기부상 스테이지용 능동진동제어시스템 설계)

  • Lee, Joo-Hoon;Kim, Yong-Joo;Son, Sung-Wan;Lee, Hong-Ki;Lee, Se-Han;Choi, Young-Kiu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.121-124
    • /
    • 2004
  • In this paper, we address an active vibration control system, which suppresses the vibration engaged by magnetically levitated stage. The stage system consists of a levitating platen with four permanent magnetic linear synchronous motors in parallel. Each motor generates vertical force fer suspension against gravity and propulsion force horizontally as well. This stage can generate six degrees of freedom motion via the vertical and horizontal forces. In the stage system, which represents the settling-time critical system. the motion of the platen vibrates mechanically. We designed an active vibration control system for suppressing vibration due to the stage moving. The command feedforward with inertial feedback algorithm is used fer solving stage system's critical problems. The components of the active vibration control system are accelerometers for detecting stage table's vibrations, a digital controller with high precise signal converters, and electromagnetic actuators.

  • PDF

Dynamic Model and Governing Equations of a Shallow Arches with Moving Boundary (이동 경계를 갖는 얕은 아치의 동적 모델과 지배방정식)

  • Shon, Sudeok;Ha, Junhong;Lee, Seungjae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.2
    • /
    • pp.57-64
    • /
    • 2022
  • In this paper, the physical model and governing equations of a shallow arch with a moving boundary were studied. A model with a moving boundary can be easily found in a long span retractable roof, and it corresponds to a problem of a non-cylindrical domain in which the boundary moves with time. In particular, a motion equation of a shallow arch having a moving boundary is expressed in the form of an integral-differential equation. This is expressed by the time-varying integration interval of the integral coefficient term in the arch equation with an un-movable boundary. Also, the change in internal force due to the moving boundary is also considered. Therefore, in this study, the governing equation was derived by transforming the equation of the non-cylindrical domain into the cylindrical domain to solve this problem. A governing equation for vertical vibration was derived from the transformed equation, where a sinusoidal function was used as the orthonormal basis. Terms that consider the effect of the moving boundary over time in the original equation were added in the equation of the transformed cylindrical problem. In addition, a solution was obtained using a numerical analysis technique in a symmetric mode arch system, and the result effectively reflected the effect of the moving boundary.

Proposition of Automatic Ship Mooring Using Hydraulic Winch (유압 윈치를 이용한 선박 자동 계선법)

  • Hur, J.G.;Yang, K.U.
    • Journal of Drive and Control
    • /
    • v.10 no.4
    • /
    • pp.14-21
    • /
    • 2013
  • The numerical analysis of the automatic ship mooring system which was equipped in the ship for trying to berth at the pier was performed in this study. The automatic ship mooring using hydraulic winch was a new method that had not need to change the existing devices and to help a pilot ship of outside. The numerical results of the proposed mooring system including ship motion were that the speed and rolling phenomenon of ship was affected by changing in the ship weight and affected the slope maintenance and yaw degree of ship if there has a trim of stern. Also, a static force of ship at the initial movement was important to calculate the mooring power. The moving force and inertial force of ship on the vertical direction was confirmed for the mooring stability. Therefore, the power and velocity of hydraulic mooring winch should be determined by considering the significant characteristics such as weight, velocity, inertial force and moving force of ship.