• Title/Summary/Keyword: Vertical Ground Rod

Search Result 7, Processing Time 0.023 seconds

Property of Long vertical rod according to the different injection point with impulse current (대형 봉상 접지전극의 임펄스 인가위치에 따른 특성)

  • 이복희;장근철;엄주홍;김병근;오성균;길형준
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.369-372
    • /
    • 2003
  • To obtain a low ground resistance in high resistivity soil or in insufficient place such as downtown, long vertical ground rods are often used. However, if the lightning current or fault current with high frequency flows into the grounding system, the ground impedance is remarkedly increased. This paper presents how the impulse and fault current works on the long. vertical ground rods associated with incoming points. When the test current was injected at the bottom of ground rod, the potential waveform of ground rod includes the oscillation with high frequency.

  • PDF

An Analysis of Potential Interference Effects in the Vicinity of Ground Rod Depending on Frequency of Ground Currents (접지전류의 주파수에 따른 수직 접지전극 주변에서 전위간섭 영향 분석)

  • Lee, Bok-Hee;Cho, Yong-Seung;Choi, Jong-Hyuk;Yang, Soon-Man
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.12
    • /
    • pp.88-93
    • /
    • 2011
  • When the ground current is injected into the adjacent ground electrode, the potential interference is caused between ground electrodes, the ground potential interferences have been largely studied with power frequency fault currents. Many attempts to find the frequency-dependent grounding impedance report that the high frequency grounding impedance is very different with the ground resistance. This paper presents experimental data on the frequency-dependent potential interference effects in the vicinity of ground rod. The ground potential rises around the test ground rod of 4 or 6[m] were measured and discussed. As a result, the ground potential rises and potential interference factor are decreased with decreasing the grounding impedance. It was found that the lowering of grounding impedance is critical to reduce the ground potential interference effects.

Ground impedance of deeply driven rod in high frequency domain (고주파수 영역에서 심매설 접지전극의 접지임피던스)

  • Lee, Bok-Hee;Lee, Tae-Hyung;Lee, Su-Bong;Jeong, Hyun-Wook;Jeong, Dong-Cheol
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.247-250
    • /
    • 2004
  • A ground resistance is a good index of performance in a grounding system, but it does not reflect the performance in transient states. Recently long vertical ground rods in urban areas are often installed. But because of the inductance of long ground rods the ground impedance at high frequency might be greater than its resistance at low frequency. In this paper, a ground impedance of deeply driven ground rod has been measured in the frequency range from 10 kHz to 50 MHz. As a result, the ground impedances of a deeply driven ground rods are almost constant at the frequency range less than 100 kHz. However at high frequency the ground impedance showed the strong frequency dependance.

  • PDF

An Analysis of Potential Interference in the Vicinity of the Vertical Ground Rod (수직 접지전극 주변에서 전위간섭의 분석)

  • Lee, Bok-Hee;Lee, Kang-Soo;Seong, Chang-Hoon;Choi, Jong-Hyuk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.5
    • /
    • pp.85-91
    • /
    • 2011
  • A grounding system is generally composed of several vertical, horizontal electrodes or grids. Excessive ground potential rises due to adjacent grounding electrodes can cause failures or misoperation of electronic devices and control systems. It is therefore necessary for computer-related and information-oriented equipment to be placed at a sufficient distance from the areas influenced by grounding electrodes. In this paper, in order to propose a method for evaluating the ground potential rise and interference in the vicinity of vertical grounding electrodes, the experimental and theoretical results on the potential interference between vertical grounding electrodes and its frequency dependence were described. The ground potential rise is sharply decreased with increasing the distance between grounding electrodes. In case that the separation of vertical grounding electrodes is less than 1.5[m], the potential interference coefficient was greater than 0.1 and linearly increased with the frequency of the test current within the frequency of 1[MHz].

An Analysis of Potential Interference Effects in the Vicinity of a Vertical Ground Rod (수직 접지전극 주변에서 전위간섭 영향분석)

  • Cho, Yong-Seung;Yang, Soon-Man;Yoo, Yang-Woo;Lee, Bok-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1570-1571
    • /
    • 2011
  • 인접한 독립 접지전극에 접지전류가 인가된 경우 접지전극 상호간 전위간섭을 일으키게 된다. 상용주파수 접지전류에 대한 전위간섭은 많은 분석이 이루어 졌으나, 뇌서지와 같은 고주파수를 포함하는 접지전류에 대한 전위간섭의 분석은 충분히 수행되지 못하였다. 본 논문에서는 상호간 영향을 줄 수 있는 길이 4 m인 수직 접지전극을 대상으로 주파수에 따른 전위간섭의 영향을 분석하였으며, 수직 접지전극의 주변에 나타나는 대지표면전위와 함께 상호 비교 분석하였다. 그 결과, 전위간섭은 접지임피던스의 변화에 의존하는 경향성을 나타내었으며, 수직 접지전극 길이의 1.5배에 해당하는 이격거리에서 접지전극의 전위와 대지표면전위가 거의 일치하는 것으로 나타났다.

  • PDF

Vibration Control of a Tracked Vehicle with ER Suspension Units (II);Modeling and Control of a Tracked Vehicle (ER 현수장치를 갖는 궤도 차량의 진동제어 (II);궤도차량의 모델링 및 제어)

  • Park, Dong-Won;Choe, Seung-Bok;Gang, Yun-Su;Seo, Mun-Seok;Sin, Min-Jae;Choe, Gyo-Jun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.11 s.170
    • /
    • pp.1960-1969
    • /
    • 1999
  • This paper presents dynamic modeling and controller design of a tracked vehicle installed with the double rod type ERSU(electro-rheological suspension unit). A 16 degree-of-freedom model for the tracked vehicle is established by Lagrangian method followed by the formulation of a new sky-ground hook controller. This controller takes account for both the ride quality and the steering stability. The weighting parameter between the two performance requirements is adopted to adjust required performance characteristics with respect to the operation conditions such as road excitation. The parameter is appropriately determined by employing a fuzzy algorithm associated with the vehicle motion. Computer simulations are undertaken in order to demonstrate the effectiveness of the proposed control system. Acceleration values at the driver's seat are analyzed under bump road profile, while frequency responses of vertical acceleration are investigated under random road excitation.

Evaluation of Surcharge toads Acting in Backfilled Space (되메움 공간의 상재하중 영향평가에 관한 연구)

  • Moon Chang-Yeul;Kim Hee-Dong;Choi Heon
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.9
    • /
    • pp.167-176
    • /
    • 2004
  • Underground structures will be affected by the additional surcharge loads such as traffic load et al. Terzaghi (1956) suggested the equation on the influences of surcharge loads in vertically backfilled spaces. In field, the shapes of backfill spaces are not always formed vertically. Then the Terzagi (1956) equation is not suitable to use because of boundary condition. This study suggests equation to calculate the stress in backfilled space caused by surcharge loads when the backfilled space is sloped symmetrically. The suggested equation is verified by carbon box test and numerical analysis. The experimental results show good agreement with the suggested equation but the numerical analysis result shows a little disagreement. The differences are estimated to be caused by the fact that ground made by carbon rod has become more dense and internal frction and wall friction has increased itself as surcharge load is added but that this increase can not be considered in the numerical analysis. The suggested equation shows good agreement with Terzaghi (1956) equation in case of sloped backfill ground. According to the results, it is considered that the suggested equation can be applied not only to sloped space but also to vertical space. Further investigation using full scale experiment is needed.