• 제목/요약/키워드: Vertical Articulated Robot

검색결과 18건 처리시간 0.026초

수직통로를 극복하기 위한 협소구역 이동용 다관절 로봇 설계 (Design of Articulated Mobile Robot to Overcome Vertical Passages in Narrow Space)

  • 이지수;김성현;양현석;박노철
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.806-811
    • /
    • 2005
  • The robot to search and rescue is used in narrow space where human cannot approach. In case of this robot, it can overcome obstacles such as wrecks or stairs etc. Also, this robot can do various locomotion for each object. In this reason, an articulated robot has advantages comparing with one module robot. However, the existing articulated robot has limits to overcome vertical passages. For expanding contacted territory of robot, a novel mechanism is demanded. In this paper, the novel mechanism of articulated mobile robot is designed for moving level ground and vertical passages. This paper proposes to change wheel alignment. The robot needs two important motions for passing vertical passages like pipe. One is a motion to press wheels at wall for not falling into gravity direction. The other is a motion that wheels contact a vertical direction of wall's tangential direction for reducing loss of force. The mechanism of the robot focused that two motions can be acted to use just one motor. Length of each link of robot is optimized that wheels contact a vertical direction of wall's tangential direction through kinematic modeling of each link. The force of pressing wall of robot is calculated through dynamic modeling. This robot composes four modules. This mechanism is confirmed by dynamic simulation using ADAMS program. The articulated mobile robot is elaborated based on the results of kinematic modeling and dynamic simulation.

  • PDF

다관절 로봇의 동적 시뮬레이터 설계 (A Design of Dynamic Simulator of Articulated Robot)

  • 박인만;정성원
    • 한국산업융합학회 논문집
    • /
    • 제18권2호
    • /
    • pp.75-81
    • /
    • 2015
  • This study proposes an articulated robot control system using an on/off-line robot graphic simulator with multiple networks. The proposed robot control system consists of a robot simulator using OpenGL, a robot controller based on a DSP(TMS320) motion board, and the server/client communication by multiple networks. Each client can control the real robot through a server and can compare the real robot motion with the virtual robot motion in the simulation. Also, all clients can check and analyze the robot motion simultaneously through the motion image and data of the real robot. In order to show the validity of the presented system, we present an experimental result for a 6-axis vertical articulated robot. The proposed robot control system is useful, especially, in the industrial fields using remote robot control as well as industrial production automation with many clients.

A Study on Real Time Working Path Control of Vertical Type Robot System for the Forging and Casting Process Automation

  • Lim, O-Deuk;Kim, Min-Seong;Jung, Yang-Geun;Kang, Jung-Suk;Won, Jong-Bum;Han, Sung-Hyun
    • 한국산업융합학회 논문집
    • /
    • 제20권3호
    • /
    • pp.245-256
    • /
    • 2017
  • In this study, we describe a new approach to real-time implementation of working path control for the forging and casting manufacturing process by vertical type articulated robot system. The proposed control scheme is simple in structure, fast in computation, and useful for real-time control of factory automation based on robot system. Moreover, this scheme does not require any accurate parameter information, nor values of the uncertain parameters and payload variations. Reliability of the proposed controller is proved by simulation and experimental results for robot manipulator consisting of arm with six degrees of freedom under the variation of payloads and tracking trajectories in Cartesian space and joint space. The vertical type articulated robot manipulator with six axes made in SMEC Co., Ltd. has been used for real-time implementation test to illustrate the enhanced working path control performance for unmanned automation of the forging and casting manufacturing process.

단조공정 트리밍작업 자동화를 위한 병진관절을 갖는 7축 다관절 로봇의 최적 작업경로제어에 관한 연구 (A Study on Optimal Working Path Control of Seven Axes Vertical Type Robot with Translation Joint for Triming Working Automation in Forming Process)

  • 김민성;최민혁;배호영;임오득;강정석;한성현
    • 한국산업융합학회 논문집
    • /
    • 제21권2호
    • /
    • pp.53-62
    • /
    • 2018
  • This study propose a new approach to control the optimal working path of vertical type articulated robot with translation joint for trimming working process automation in forging manufacturing process. The basic structure of the proposed robotic joints controller consists of a Proportional-Intergral controller and a Proportional-Derivative controller in parallel. The proposed control scheme takes advantage of the properties of the fuzzy PID controllers. The proposed method is suitable to control of the trajectory and path control in cartesian space for vertical type articulated robot manipulator. The results illustrates that the proposed fuzzy computed torque controller is more stable and robust than the conventional computed torque controller. The reliability is varified by simulation test for vertical type s articulated robot with seven joints including one trqanslation joint.

고온 환경 단조 공정자동화를 위한 6축 수직다관절 로봇의 기구학 및 동특성 해석에 관한 연구 (A Study on Kinematics and Dynamics Analysis of Vertical Articulated Robot with 6 axies for Forging Process Automation in High Temperatures Environments)

  • 조상영;김민성;구영목;원종범;강정석;한성현
    • 한국산업융합학회 논문집
    • /
    • 제19권1호
    • /
    • pp.10-17
    • /
    • 2016
  • In general, articulated robot control technology is limited to the design of robot arm control systems considering each joint of the robot joint as a simple servomechanism. This method describes the varying dynamics of a manipulator inadequately because it neglects the motion and configuration of the whole arm mechanism. The changes of the parameters in the controlled system are significant enough to render conventional feedback control strategies ineffective. This basic control system enables a manipulator to perform simple positioning tasks such as in the pock and place operation. However, joint controllers are severely limited in precise tracking of fast trajectories and sustaining desirable dynamic performance for variations of payload and parameter uncertainties. In many servo control applications the linear control scheme proposes unsatisfactory, therefore, a need for nonlinear techniques that increasing. for Forging process automation.

고온 환경 단조공정 자동화를 위한 수직다관절 로봇의 실시간 작업경로 제어에 관한 연구 (A Study on Real Time Working Path Control of Vertical Articulated Robot for Forging Process Automation in High Temperature Environments)

  • 조상영;김민성;도기훈;한성현;하언태;심현섭;임창식
    • 한국산업융합학회 논문집
    • /
    • 제20권1호
    • /
    • pp.34-48
    • /
    • 2017
  • This study proposes a new approach to control a trajectory control of vertical type articulated robot arm with six revolution joints by computed torque method for manufacturing process automation. The proposed control scheme takes advantage of the properties of the fuzzy controllers. The proposed method is suitable to control of the trajectory and path control in cartesian space for vertical type articulated robot manipulator for forging manufacturing process automation. The results is illustrated that the proposed fuzzy computed torque controller is more stable and robust than the conventional computed torque controller. This study is included with an analytical methodology of inverse kinematic computation for 6 DOF manipulators. And an intelligent PID based on feed forward fuzzy control structure is applied to control the working path control with disturbances caused by uncertainty parameters of the manipulator dynamic model. Lastly, the validity of proposed is verified by simulations and experiments.

고온 환경에서 적용 가능한 병진관절을 갖는 수직 다관절 로봇시스템 개발 및 내구성 분석에 관한 연구 (A Study on Design and Durability Analysis of Vertical Multi-Jointed Robot with Translational Joint to adapt in the High Temperature Environment)

  • 김두범;김희진;배호영;김상현;임오득;한성현;강정석;노성훈
    • 한국산업융합학회 논문집
    • /
    • 제22권3호
    • /
    • pp.337-351
    • /
    • 2019
  • We Proposed a new technology to develop vertical type multi-joint robot system enable to adapt in high temperature environment. The main contents is a new approach to design a vertical type articulated robot with prismatic joint and analysis of thermal for process automation of casting and forging. The proposed robot is suitable to use handling working parts of casting and forging. for the manufacturing process of forging and casting. The reliability is illustrated that the proposed technique is more stable and robust than the conventional system. This study is concerned with an analytical methodology of kinematic computation for 7 DOF manipulators for optimization of forging manufacturing process.

비선형 변환제어에 의한 3자유도 수직 다관절 로봇의 제어 (Control of a 3-DOF vertical articulated robotic system using nonlinear transformation control)

  • 양창일;백윤수
    • 대한기계학회논문집A
    • /
    • 제21권11호
    • /
    • pp.1809-1818
    • /
    • 1997
  • Mathematical models of industrial robots or manipulators are highly nonlinear equations with nonlinear coupling between the variables of motion. As the working speed has been fast, the effects of nonlinear terms have become serious. So the control algorithm based on approximately linearized equation looses the efficiency. In order to design the control law for the nonlinear models, Hunt-Su's nonlinear transformation method and Marino's feedback equivalence condition are used with linear quadratic regulator(LQR) theory in this study. Nonlinear terms of the system are eliminated and coupled terms are decoupled by this feedback law. This method is applied to a 3-D.O.F. vertical articulated manipulator by both experiments and simulations and compared with PID control which is widely used in the industry.