• Title/Summary/Keyword: Vertebral body

Search Result 345, Processing Time 0.025 seconds

Radiological and Clinical Results of Laminectomy and Posterior Stabilization for Severe Thoracolumbar Burst Fracture : Surgical Technique for One-Stage Operation

  • Kim, Myeong-Soo;Eun, Jong-Pil;Park, Jeong-Soo
    • Journal of Korean Neurosurgical Society
    • /
    • v.50 no.3
    • /
    • pp.224-230
    • /
    • 2011
  • Objective : This study aimed to show the possibility of neural canal enlargement and restoration of bony fragments through laminectomy and minimal facetectomy without pediculectomy or an anterior approach, and also to prove the adequacy of posterior stabilization of vertebral deformities after thoracolumbar bursting fracture. Methods : From January 2003 to June 2009, we experienced 45 patients with thoracolumbar burst fractures. All patients enrolled were presented with either a neural canal compromise of more than 40% with a Benzel-Larson Grade of VI, or more than 30% compromise with less than a Benzel-Larson Grade of V. Most important characteristic of our surgical procedure was repositioning retropulsed bone fragments using custom-designed instruments via laminectomy and minimal facetectomy without removing the fractured bone fragments. Beneath the dural sac, these custom-designed instruments could push the retropulsed bone fragments within the neural canal after the decompression and bone fragment repositioning. Results : The mean kyphotic deformities measured preoperatively and at follow-up within 12 months were 17.7 degrees (${\pm}6.4$ degrees) and 9.6 degrees (${\pm}5.2$ degrees), respectively. The mean midsagittal diameter improved from 8.8 mm (${\pm}2.8$ mm) before surgery to 14.2 mm (${\pm}1.6$ mm) at follow-up. The mean traumatic vertebral body height before surgery was 41.3% (${\pm}12.6%$). At follow-up assessment within 12 months, this score showed a statistically significant increase to 68.3% (${\pm}12.8%$). Neurological improvement occurred in all patients. Conclusion : Though controversy exists in the treatment of severe thoracolumbar burst fracture, we achieved effective radiological and clinical results in the cases of burst fractures causing severe canal compromise and spinal deformity by using this novel custom-designed instruments, via posterior approach alone.

Therapeutic Effect of Teriparatide for Osteoporotic Thoracolumbar Burst Fracture in Elderly Female Patients

  • Yu, Dongwoo;Kim, Sungho;Jeon, Ikchan
    • Journal of Korean Neurosurgical Society
    • /
    • v.63 no.6
    • /
    • pp.794-805
    • /
    • 2020
  • Objective : Teriparatide is known as an effective anabolic agent not only for severe osteoporosis but also for bone healing and union. We explored the possibility of teriparatide as an alternative treatment option for osteoporotic thoracolumbar (TL) burst fracture. Methods : This retrospective study enrolled 35 female patients with mean age of 73.77±6.71 years (61-88) diagnosed as osteoporotic TL burst fracture with ≥4 of thoracolumbar injury classification and severity (TLICS) score and no neurological deficits. All patients were treated by teriparatide only (12 of group A), teriparatide plus vertebroplasty (12 of group B), or surgical fixation with fusion (11 of group C), and followed up for 12 months. Radiological outcomes were evaluated using radiological parameters including kyphotic angle (KA), segmental vertebral kyphotic angle (SVKA), compression ratio (CR), and vertebral body height (anterior [AH], middle [MH], posterior [PH]). Functional outcomes were evaluated using visual analog scale (VAS) and Macnab classification (MC). Results : There were no statistical significant differences in age, bone mineral density (-3.36±0.73), and TLICS score (4.34±0.48) among the three groups (p>0.05). Teriparatide was administered during 8.63±2.32 months in group A and B. In 12-month radiological outcomes, there were significant restoration in SVKA, CR, AH, and MH of group B and KA, SVKA, CR, AH, and MH of group C compared to group A with no radiological changes (p<0.05). All groups showed similar significant improvements in 12-month functional outcomes, although group B and C showed a better 1-month VAS, 1-month MC, 3-month MC compared to group A (p<0.05). Conclusion : Non-surgical treatment with teriparatide showed similar 12-month functional outcomes compared to surgical fixation with fusion. The additional vertebroplasty to teriparatide and surgical fixation with fusion were more helpful to improve short-term functional outcomes with structural restoration compared to teriparatide only.

Evaluation of Hormone Deficiency in Vertebral Body: Analysis of Bone Structure and Quality (호르몬 결핍이 척추체에 미치는 영향 평가: 골의 구조학적 및 질적 요소 분석)

  • Kim, Chi-Hoon;Woo, Dae-Gon;Park, Ji-Hyung;Lee, Beob-Yi;Kim, Chi-Hyun;Kim, Han-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.5
    • /
    • pp.92-101
    • /
    • 2010
  • This study evaluated the structure and quality of osteoporotic vertebral bone. To induce osteoporosis, eight rats were ovariectomized (OVX). All rats were divided into two groups (Normal group: 4, OVX group: 4). Total lumbar vertebrae for each rat were scanned by in-vivo ${\mu}CT$ at 0, 4 and 8 weeks. Morphological characteristics (BV/TV, Tb.Th, Tb.N, Tb.Sp and SMI) were calculated by in-vivo ${\mu}CT$ image analyzer. Three dimensional finite element models were analyzed to investigate bone strength of OVX and Normal groups. Moreover, the elastic modulus was quantitatively analyzed to evaluate the quality changes of osteoporotic bone. In the OVX group, BV/TV, Tb.Th and Tb.N were significantly decreased at all the lumbar over time (p<0.05). We also investigated a contrary tendency in Tb.Sp and SMI, compared to the above results in each group. A degree of alteration of mechanical characteristics in OVX group was decreased over measuring time (p<0.05). Bone quality presented by distribution of elastic modulus was improved in the Normal group more than OVX group. The findings of the present study indicated that both bone structure and quality of whole lumbar could be tracked and detected by analyzing the morphological and biomechanical characteristics of bones, based on a nondestructive method.

Diagnostic X-ray from the Perspective of Chuna Manual Medicine, Based on the Listing System of Spinal and Pelvic Subluxation (단순 방사선 영상 검사를 통한 추나의학적 진단 방법 - 척추.골반변위 명명체계를 중심으로 -)

  • Lee, Jin-Hyun;Kim, Chang-Gon;Jo, Dong-Chan;Moon, Su-Jeong;Park, Tae-Young;Ko, Youn-Suk;Nam, Hang-Woo;Lee, Jung-Han
    • The Journal of Churna Manual Medicine for Spine and Nerves
    • /
    • v.9 no.1
    • /
    • pp.1-14
    • /
    • 2014
  • Objective : The purpose of this study is to offer a new approach to diagnostic X-ray in perspective of Chuna manual medicine for clinical application. Methods : Characteristics of each malposition in X-ray were analyzed comprehensively, based on the listing system. By verifying these results, find out the methods of X-ray diagnosis according to the each malposition. Results : 1. Vertebral malposition can be explained by alignment and relative position of vertebral body in the X-ray. To obtain more accurate estimation of subluxation, features of other structures should be considered, such as spinous process, intervertebral foramen and disc space. 2. Pelvic malposition can be determined by relative location of anterior superior iliac spine (ASIS) and posterior superior iliac spine (PSIS) in the X-ray. Also other pelvic parameters should be utilized to make a diagnosis of sacral malposition. Conclusions : Diagnostic X-ray should be applied to many clinicians for reasonable Chuna manual medicine application. And further studies are needed to use the diagnostic X-ray in the perspective of Chuna manual medicine.

  • PDF

Survey of Sonoanatomic Distances For Lumbar Medial Branch Nerve Blocks in Healthy Volunteers

  • Gharaei, Helen;Imani, Farnad;Solaymani-Dodaran, Masoud
    • The Korean Journal of Pain
    • /
    • v.27 no.2
    • /
    • pp.133-138
    • /
    • 2014
  • Background: The precise knowledge of anatomy and the region of transverse process (TP) and superior articular processes (AP) and their distance from the skin are important in blocking and treating lumbar facet syndrome. Evaluation of these anatomic distances from 3rd and 5th lumbar vertebrae in both sides and in different body mass index (BMI) in healthy volunteers might improve knowledge of ultrasound (US) lumbar medial branch nerve blocks (LMBB). Methods: Bilateral US in the 3rd and 5th lumbar vertebrae of 64 volunteers carried out and the distance between skin to TP and skin to AP was measured. These distances were compared on both sides and in different BMI groups. The analysis was done using SPSS 11. Analysis of variance was used to compare the means at three vertebral levels (L3-L5) and different BMI groups. P values less than 0.05 were considered statistically significant. The paired t-test was used to compare the mean distance between skin to TP and skin to AP on both sides. Results: The distance between skin to TP and skin to AP of 3rd vertebrae to 5th vertebrae was increased in both right and left sides (P < 0.001) from up to down. The mean distance from skin to TP were greater on the left side compared to the right in all three vertebral levels from L3 to L5 (P values 0.014, 0.024, and 0.006 respectively). The mean distance from skin to TP and the skin to AP was statistically significant in different BMI groups (P < 0.001). Conclusions: We found many anatomic distances which may increase awareness of US guided LMBB.

Adult Trauma Patients with Isolated Thoracolumbar Spinous and Transverse Process Fractures May be Managed Conservatively to Improve Emergency Department Throughput

  • Awad, Kyrillos;Spencer, Dean;Ramakrishnan, Divya;Pejinovska, Marija;Grigorian, Areg;Schubl, Sebastian;Nahmias, Jeffry
    • Journal of Trauma and Injury
    • /
    • v.34 no.1
    • /
    • pp.31-38
    • /
    • 2021
  • Purpose: Traumatic vertebral injuries have a prevalence of 4-5% at level I centers. Studies have demonstrated that isolated thoracolumbar transverse process fractures (iTPF) rarely require brace or surgical interventions. We hypothesized that similarly isolated thoracolumbar spinous process fractures (iSPF) would have less need for bracing and operative interventions than SPFs with associated vertebral body (VB) fractures (SPF+VB). We performed a similar analysis for iTPF compared to transverse process fractures associated with VB injury (TPF+VB). Methods: In this single-center, retrospective study from 2012 to 2016, patients were classified into iSPF, SPF+VB, iTPF, and TPF+VB groups. Data including the fracture pattern, neurologic deficits, and operative intervention were obtained. The primary outcome studied was the need for bracing and/or surgery. A statistical analysis was conducted. Results: Of 98 patients with spinous process fractures, 21 had iSPF and 77 had SPF+VB. No iSPF patients underwent surgery, whereas 24 (31.17%) SPF+VB patients did undergo surgery (p=0.012). In the iSPF group, three patients (15%) received braces only for comfort, whereas 37 (48.68%) of the SPF+VB group required bracing (p=0.058). Of 474 patients with transverse process fractures, 335 had iTPF and 139 had TPF+VB. No iTPF patients underwent surgery, whereas 28 (20.14%) TPF+VB patients did (p≤0.001). Of the iTPF patients, six (1.86%) were recommended to receive braces only for comfort, while 68 (50.75%) of the TPF+VB patients required bracing (p<0.001). Conclusions: No patients with iSPF or iTPF required surgical intervention, and bracing was recommended to patients in these groups for comfort only. It appears that these injures may be safely managed without interventions, calling into question the need for spine consultation.

Accuracy of Thoracolumbar Spine K-Wire Placement in Toy, Small and Medium Breed Dogs: Novice Surgeons with 3D Printed Patient-Specific Guide versus an Experienced Surgeon with Freehand Techniques

  • Hwa-Joeng Shin;Hae-Beom Lee;Yoon-Ho Roh
    • Journal of Veterinary Clinics
    • /
    • v.39 no.6
    • /
    • pp.294-301
    • /
    • 2022
  • Three-dimensional (3D) printing technique has been widely used for accurate screw and pin placement in orthopedic surgery and neurosurgery. However, there are few reports comparing the accuracy between the patient-specific guides and freehand Kirschner wire (K-wire) placement in toy, small and medium breed dogs. This study aimed to assess the accuracy of 3D printed patient-specific guides (PSGs) in pin insertion in the thoracolumbar vertebrae of toy breed dogs and compare the outcomes between novice and experienced surgeons. The experiment was conducted on the thoracolumbar vertebrae of 21 euthanized toy breed dogs (median weight, 5.95 kg). The optimal insertion angle placement was determined and patient-specific guides for K-wire insertion were designed and 3D printed using computed tomography (CT) and a 3D computer-aided design program of three vertebrae (Thoracic 12-Lumbar 1). K-wire tracts were made by experienced and novice surgeons and compared to assess the accuracy based on postoperative CT. Based on postoperative CT, in the experienced group, 61 out of 63 pins (96.8%) were fully contained inside the vertebral body and lamina, whereas two pins (3.2%) had perforated the vertebral canal (grade 3, 2-4 mm breach). However, all the pins in the novice group were fully contained. The use of 3D printed PSGs for pin insertion in the thoracolumbar region is an accurate and safe alternative to freehand screw placement by novice surgeons in toy, small and medium breed dogs. Operations with 3D printed PSGs allow novice surgeons to achieve better or similar outcomes in accurate placement of pin/screws in vertebrae.

Comparison of mDixon, T2 TSE, and T2 SPIR Images in Magnetic Resonance Imaging of Lumbar Sagittal Plane (요추 시상면 자기공명 영상검사에서 mDixon과 T2 TSE, T2 SPIR 영상의 비교 연구)

  • Jung, Da-Bin;Lee, Hae-Kag;Heo, Yeong-Cheol
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.6
    • /
    • pp.927-933
    • /
    • 2021
  • The purpose of this study was to compare and analyze the differences in scan time, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) in the third lumbar vertebral region including the back fat, spinal cord, and cerebrospinal fluid using the mDixon, T2 TSE, and T2 spectral pre-saturation with inversion-recovery (SPIR) techniques. With the factors affecting the SNR fixed, the lumbar sagittal plane images of 30 adults were compared on mDixon, T2 TSE, and T2 SPIR imaging tests. The test times for mDixon, T2 TSE, and T2 SPIR were 115 seconds, 60 seconds, and 60 seconds, respectively. The mDixon T2 images showed higher SNR than the T2 TSE images at the third lumbar vertebral region (p<0.05), lower SNR in the back fat and cerebrospinal fluid (p<0.05) areas, and comparable SNR in the spinal cord (p>0.05). The CNR between the third lumbar vertebral area and back fat was higher in the mDixon T2 images, and the CNR of the cerebrospinal fluid and spinal cord images was higher in the T2 TSE images (p<0.05). The mDixon T2 FS images CNR was lower for the 3rd lumbar vertebral body region and back fat than the T2 SPIR images, and higher for the spinal cord and cerebrospinal fluid images (p<0.05). The CNR between the third lumbar body and back fat areas was higher in the mDixon T2 FS images (p<0.05), and there was no difference in the CNR in the images of the cerebrospinal fluid and the spinal cord (p>0.05). It is difficult to determine whether the mDixon technique is superior to the conventional T2 TSE and T2 SPIR techniques in terms of test time, SNR, and CNR. This study was confined to patients with simple lower back pain and was limited by controlled experimental conditions. Studies using clinically applied protocols are warranted in the future.

Correlation Analysis between the Factors Associated with Osteoporosis and the Fat Infiltration Rate of the Multifidus and Erector Spinae Muscles in Osteoporotic Vertebral Compression Fracture Patients (골다공증성 척추 압박 골절 환자에서 다열근과 척추기립근의 지방 침투율과 골다공증 관련 인자의 상관 관계 분석)

  • Jun, Deuk Soo;Baik, Jong-Min;Choi, Ji Uk
    • Journal of the Korean Orthopaedic Association
    • /
    • v.55 no.4
    • /
    • pp.318-323
    • /
    • 2020
  • Purpose: To examine the relationship between total fat infiltration (TFI) rate, which quantifies the reduction of muscles around the spine and is an important factor for sarcopenia, and the factors affecting osteoporotic vertebral compression fracture. Materials and Methods: Patients treated for osteoporotic compression fractures of the lumber spine from January 2012 to December 2016 were analyzed retrospectively. Among them, this study included ninety-eight patients who were 1) diagnosed with osteoporosis with a bone mineral density (BMD) T score of less than 2.5 g/cm2, 2) received vertebroplasty or kyphoplasty for lumbar fractures, 3) involved one segment of the lumbar spine, and 4) were followed-up for more than one year. The TFI rate confirmed by analyzing magnetic resonance imagings with the Image J program was studied. Based on this, the relationship between the TFI of the multifidus and erector spinae muscles and the factors of osteoporosis were analyzed. Results: The mean TFI of the multifidus and erector spinae was 14.66±10.16. The spine BMD showed a positive correlation with the hip BMD, but a negative correlation with the TFI. A positive correlation was observed between the hip BMD and body mass index. In addition, vitamin D was positively correlated with both the hip and spine BMD but negatively correlated with the TFI rate. Conclusion: Muscle growth helps treat osteoporosis, and can prevent fractures that occur frequently in osteoporosis patients. Increasing the vitamin intake can also slow the progression of muscle atrophy.

Cross sectional area change of the dural-sac according to impact duration in a spinal motion segment FE model (척추운동분절 FE모델에서 충격시간에 따른 마미 단면적의 변화)

  • Kim, Y. E.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.117-120
    • /
    • 2002
  • In this study the occlusion of dural-sac, the outer membrane of spinal cord in the lumbar region, was quantitatively analyzed using one motion segment finite element model. Occlusion was quantified by calculating cross sectional area change of dural-sac far different compressive impact duration(loading rate) due to bony fragment at the posterior wall of the cortical shell in vertebral body. Dural-sac was occluded most highly in the range of 8∼12 msec impact duration by the bony fragment intruding into the spinal canal. t=400 msec case 4% cross sectional area change was calculated, which is the same as the cross sectional area change under 6 kN of static compressive loading.

  • PDF