• Title/Summary/Keyword: Verification Software

Search Result 952, Processing Time 0.03 seconds

An Implementation of ECC(Elliptic Curve Cryptographic)Processor with Bus-splitting method for Embedded SoC(System on a Chip) (임베디드 SoC를 위한 Bus-splitting 기법 적용 ECC 보안 프로세서의 구현)

  • Choi, Seon-Jun;Chang, Woo-Youg;Kim, Young-Chul
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.651-654
    • /
    • 2005
  • In this paper, we designed ECC(Elliptic Curve Cryptographic) Processor with Bus-splitting mothod for embedded SoC. ECC SIP is designed by VHDL RTL modeling, and implemented reusably through the procedure of logic synthesis, simulation and FPGA verification. To communicate with ARM9 core and SIP, we designed SIP bus functional model according to AMBA AHB specification. The design of ECC Processor for platform-based SoC is implemented using the design kit which is composed of many devices such as ARM9 RISC core, memory, UART, interrupt controller, FPGA and so on. We performed software design on the ARM9 core for SIP and peripherals control, memory address mapping and so on.

  • PDF

Transient analysis of cross-ply laminated shells using FSDT: Alternative formulation

  • Sahan, Mehmet Fatih
    • Steel and Composite Structures
    • /
    • v.18 no.4
    • /
    • pp.889-907
    • /
    • 2015
  • This paper aims to present an alternative analytical method for transient vibration analysis of doubly-curved laminated shells subjected to dynamic loads. In the method proposed, the governing differential equations of laminated shell are derived using the dynamic version of the principle of virtual displacements. The governing equations of first order shear deformation laminated shell are obtained by Navier solution procedure. Time-dependent equations are transformed to the Laplace domain and then Laplace parameter dependent equations are solved numerically. The results obtained in the Laplace domain are transformed to the time domain with the help of modified Durbin's numerical inverse Laplace transform method. Verification of the presented method is carried out by comparing the results with those obtained by Newmark method and ANSYS finite element software. Also effects of number of laminates, different material properties and shell geometries are discussed. The numerical results have proved that the presented procedure is a highly accurate and efficient solution method.

Design and Verification of Hybrid Optical System for LED Surgical Light

  • Kwon, Young-Hoon;Ahn, Sun-Su;Lee, Seung-Jin;Kwon, Ki-Jin
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.421-426
    • /
    • 2015
  • This paper presents a hybrid single optical system for an LED surgical light that combines the advantages of both lens- and reflector-type single optical systems. The proposed hybrid single optical system includes a lens in the center and the LED light originating from the lens is redirected using a reflector to achieve a high beam spread. Iterative optical software simulations are used to provide data for the design of the lens and reflector for a single optical system, and for a complex optical system for the LED light assembly. The resulting data is also used to fabricate a prototype system. Experiments using the prototype of the hybrid single optical system and a mock-up LED surgical light confirm the system's shadow dilution performance and its applicability to surgical operations.

A Study on EPRI TR-106439 for Digital Indicator of Nuclear Power Plant (원전용 디지털 인디케이터의 검증 규정 EPRI TR-106439에 관한 고찰)

  • Bae, Chang-Ho;Lee, Dong-Hee;Kim, Kyu Ro;Jang, Joong Soon
    • Journal of Applied Reliability
    • /
    • v.14 no.4
    • /
    • pp.248-255
    • /
    • 2014
  • Nuclear power plants may use commercial grade items if they can pass special tests or inspections, which is called Commercial Grade Item Dedication (CGID). Digital items, however, should follow EPRI TR-106439 to be applied to nuclear power plants. This paper explains the scheme and requirements of the EPRI TR-106439 and introduces some guidelines. Firstly, in order to clarify requirements of the EPRI TR-106439, code interpretation is performed. And through case study of digital indicator, limitations of EPRI TR-106439 are mentioned, and improvement direction is proposed.

Improved Shamir's CRT-RSA Algorithm: Revisit with the Modulus Chaining Method

  • Lee, Seungkwang;Choi, Dooho;Choi, Yongje
    • ETRI Journal
    • /
    • v.36 no.3
    • /
    • pp.469-478
    • /
    • 2014
  • RSA signature algorithms using the Chinese remainder theorem (CRT-RSA) are approximately four-times faster than straightforward implementations of an RSA cryptosystem. However, the CRT-RSA is known to be vulnerable to fault attacks; even one execution of the algorithm is sufficient to reveal the secret keys. Over the past few years, several countermeasures against CRT-RSA fault attacks have tended to involve additional exponentiations or inversions, and in most cases, they are also vulnerable to new variants of fault attacks. In this paper, we review how Shamir's countermeasure can be broken by fault attacks and improve the countermeasure to prevent future fault attacks, with the added benefit of low additional costs. In our experiment, we use the side-channel analysis resistance framework system, a fault injection testing and verification system, which enables us to inject a fault into the right position, even to within $1{\mu}s$. We also explain how to find the exact timing of the target operation using an Atmega128 software board.

An Experimental Study on the Performance Evaluation of a Small-Sized Centrifugal Compressor (소형 원심압축기의 성능평가에 대한 실험적 연구)

  • Cho, Sung-Kook;Kang, Shin-Hyoung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.8
    • /
    • pp.1052-1063
    • /
    • 1998
  • The performance database of small-sized centrifugal compressors is needed for the design of high performance machines and also for the verification of design tools and analysis software. An impeller is designed, manufactured and tested. The effects of several parameters on the evaluation of performance are investigated and the performance test of parallel diffuser is also carried out. The proper estimation of static pressure, total temperature and blockage at the impeller exit is important for performance evaluation. 4 method in cooperation with 3-D calculation is suggested. The measured performances are in a good agreement with the predicted results. However, there are some discrepancies in efficiency.

Integrated Dynamic Simulation of a Magnetic Bearing Stage and Control Design (자기베어링 스테이지의 동적 거동 통합 시뮬레이션을 통한 제어 설계)

  • Kim, Byung-Sub
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.4
    • /
    • pp.730-734
    • /
    • 2013
  • The dynamic simulation of machine tools and motion control systems has been widely used for optimization, design verification, control design, etc. There are three main streams in dynamic simulation: structural dynamic analysis based onthe finite element method, dynamic motion analysis based on equations of motion, and control system analysis based on transfer functions. Generally, one of these dynamic simulation methods is chosen and employed for specific purposes. In this study, an integrated dynamic simulation is introduced, in which the structure, motion, and control dynamics are combined together. Commercially well-known software is used in the integrated dynamic simulation: ANSYS, ADAMS, and Matlab/Simulink. Using the integrated dynamic simulation, the dynamics of a magnetic bearing stage is analyzed and the causes of oscillation and noise are identified. A controller design for suppressing a flexible dynamic mode is carried out and verified through the integrated dynamic simulation.

A Study on Stable Indication for a Sloshing of Fuel-quantity according to Driving State of Vehicle (차량 주행 상태에 따른 연료량 유동의 안정 지침에 대한 연구)

  • Hur, Jin;Park, Jong-Myeong;Lee, Seon-Bong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.3
    • /
    • pp.37-44
    • /
    • 2012
  • In this paper, the application of robust fuel gauge algorithm in the external environment to general fuel gauge system is proposed. The proposed fuel gauge system is composed of two modules which are Moving Average Filter (MAF) and Inclination Filter (IF). They are used to show correctly the amount of fuel in the external environment which are curve road, slope or acceleration/deceleration driving. In parallel, verification and validation processes using Software In the Loop Simulation (SILS) in personal computer and Hardware In the Loop Simulation (HILS) similar to actual vehicle environments are established. Through this research, it turned out to be possible to operation of gauge become correct of external environment.

A Study on the Efficient Program Integration using Data Flow Analysis Method (자료 흐름 분석 기법을 이용한 효율적인 프로그램 통합에 관한 연구)

  • Park, Soon-Hyung
    • 한국IT서비스학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.337-340
    • /
    • 2008
  • To take the re-use of software, we need to study the efficient integration method of source programs. When the source programs are merged, it is required the steps of verification for any non-interference on non-identical parts of them. The traditional techniques of the program integration verify non-interference of source programs through the simple comparison of statements of source programs. We propose the efficient integration method using data flow analysis in the programs. A study comparing test results from the traditional method and the proposed method has found that the proposed method is more efficient than the traditional method.

  • PDF

Spring-Back Prediction for Sheet Metal Forming Process Using Hybrid Membrane/shell Method (하이브리드 박막/쉘 방법을 이용한 박판성형공정의 스프링백 해석)

  • 윤정환;정관수;양동열
    • Transactions of Materials Processing
    • /
    • v.12 no.1
    • /
    • pp.49-59
    • /
    • 2003
  • To reduce the cost of finite element analyses for sheet forming, a 3D hybrid membrane/shell method has been developed to study the springback of anisotropic sheet metals. In the hybrid method, the bending strains and stresses were analytically calculated as post-processing, using incremental shapes of the sheet obtained previously from the membrane finite element analysis. To calculate springback, a shell finite element model was used to unload the final shape of the sheet obtained from the membrane code and the stresses and strains that were calculated analytically. For verification, the hybrid method was applied to predict the springback of a 2036-T4 aluminum square blank formed into a cylindrical cup. The springback predictions obtained with the hybrid method was in good agreement with results obtained using a full shell model to simulate both loading and unloading and the experimentally measured data. The CPU time saving with the hybrid method, over the full shell model, was 75% for the punch stretching problem.