• Title/Summary/Keyword: Verification Software

Search Result 952, Processing Time 0.028 seconds

Hardware Accelerated Design on Bag of Words Classification Algorithm

  • Lee, Chang-yong;Lee, Ji-yong;Lee, Yong-hwan
    • Journal of Platform Technology
    • /
    • v.6 no.4
    • /
    • pp.26-33
    • /
    • 2018
  • In this paper, we propose an image retrieval algorithm for real-time processing and design it as hardware. The proposed method is based on the classification of BoWs(Bag of Words) algorithm and proposes an image search algorithm using bit stream. K-fold cross validation is used for the verification of the algorithm. Data is classified into seven classes, each class has seven images and a total of 49 images are tested. The test has two kinds of accuracy measurement and speed measurement. The accuracy of the image classification was 86.2% for the BoWs algorithm and 83.7% the proposed hardware-accelerated software implementation algorithm, and the BoWs algorithm was 2.5% higher. The image retrieval processing speed of BoWs is 7.89s and our algorithm is 1.55s. Our algorithm is 5.09 times faster than BoWs algorithm. The algorithm is largely divided into software and hardware parts. In the software structure, C-language is used. The Scale Invariant Feature Transform algorithm is used to extract feature points that are invariant to size and rotation from the image. Bit streams are generated from the extracted feature point. In the hardware architecture, the proposed image retrieval algorithm is written in Verilog HDL and designed and verified by FPGA and Design Compiler. The generated bit streams are stored, the clustering step is performed, and a searcher image databases or an input image databases are generated and matched. Using the proposed algorithm, we can improve convenience and satisfaction of the user in terms of speed if we search using database matching method which represents each object.

Design and Verification of Spacecraft Pose Estimation Algorithm using Deep Learning

  • Shinhye Moon;Sang-Young Park;Seunggwon Jeon;Dae-Eun Kang
    • Journal of Astronomy and Space Sciences
    • /
    • v.41 no.2
    • /
    • pp.61-78
    • /
    • 2024
  • This study developed a real-time spacecraft pose estimation algorithm that combined a deep learning model and the least-squares method. Pose estimation in space is crucial for automatic rendezvous docking and inter-spacecraft communication. Owing to the difficulty in training deep learning models in space, we showed that actual experimental results could be predicted through software simulations on the ground. We integrated deep learning with nonlinear least squares (NLS) to predict the pose from a single spacecraft image in real time. We constructed a virtual environment capable of mass-producing synthetic images to train a deep learning model. This study proposed a method for training a deep learning model using pure synthetic images. Further, a visual-based real-time estimation system suitable for use in a flight testbed was constructed. Consequently, it was verified that the hardware experimental results could be predicted from software simulations with the same environment and relative distance. This study showed that a deep learning model trained using only synthetic images can be sufficiently applied to real images. Thus, this study proposed a real-time pose estimation software for automatic docking and demonstrated that the method constructed with only synthetic data was applicable in space.

Development of Metrics to Measure Reusability of Services of IoT Software

  • Cho, Eun-Sook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.12
    • /
    • pp.151-158
    • /
    • 2021
  • Internet of Things (IoT) technology, which provides services by connecting various objects in the real world and objects in the virtual world based on the Internet, is emerging as a technology that enables a hyper-connected society in the era of the 4th industrial revolution. Since IoT technology is a convergence technology that encompasses devices, networks, platforms, and services, various studies are being conducted. Among these studies, studies on measures that can measure service quality provided by IoT software are still insufficient. IoT software has hardware parts of the Internet of Things, technologies based on them, features of embedded software, and network features. These features are used as elements defining IoT software quality measurement metrics. However, these features are considered in the metrics related to IoT software quality measurement so far. Therefore, this paper presents a metric for reusability measurement among various quality factors of IoT software in consideration of these factors. In particular, since IoT software is used through IoT devices, services in IoT software must be designed to be changed, replaced, or expanded, and metrics that can measure this are very necessary. In this paper, we propose three metrics: changeability, replaceability, and scalability that can measure and evaluate the reusability of IoT software services were presented, and the metrics presented through case studies were verified. It is expected that the service quality verification of IoT software will be carried out through the metrics presented in this paper, thereby contributing to the improvement of users' service satisfaction.

Development of Onboard Orbit Generation Algorithm for GEO Satellite (정지궤도 위성의 탑재 궤도 생성 알고리듬 개발)

  • Yim, Jo Ryeong;Park, Bong-Kyu;Park, Young-Woong;Choi, Hong-Taek
    • Aerospace Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.7-17
    • /
    • 2014
  • This technical paper deals with development of on-board orbit generation algorithm for GEO Satellite. This paper presents the research analysis results performed in order to improve the accuracy of the existing algorithm used for generating real-time orbit information for GEO satellite. The error impact on orbit accuracy due to the orbit error sources were analyzed with the algorithm suggested by this research. As a result of the analyses, it is found that the initial orbit should be determined with an accuracy of less than 50 m and the reference position angle error for the ground station and the satellite should be maintained within ${\pm}0.0025deg$ in order to meet the orbit accuracy specification. The development of on-board flight software based on the new algorithm was accomplished and the performance verification is ongoing by using a software based performance verification tool.

Implementation and Verification of Distance Relay Models for Real Time Digital Simulator (실시간 전력계통 시뮬레이터를 이용한 보호계전모델 개발)

  • Lee, Joo-Hun;Yoon, Yong-Beum;Cha, Seung-Tae;Lee, Jin;Choe, Jong-Woon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.7
    • /
    • pp.393-400
    • /
    • 2003
  • This paper discusses how to implement and verify a software model of the digital relay that can be added to real time digital simulator(RTDS) model library and is then subjected to the same outputs as the actual relay. The software model is stand-alone and can be used with real relays. It is also possible to conduct interactive real-time tests when the system effects of the relay action need to be investigated. The characteristics of mho type and the quadrilateral type, which is commonly used in recently developed relays, are modeled in this paper. Single circuit line and double circuit line system are used for model verification. The transmission lines are each 100 km in length and are modeled as distributed parameter lines but not frequency dependent. The transmission lines in the single circuit system are modeled as ideally transposed line. The mutual coupling data with the parallel line was taken account in the transmission lines for the double circuit system. The main CTs and PTs are included and operated in their linear region during the tests. For the purpose of testing the relay model accuracy the faults have been applied at various points on the protected line. Its accuracy is assessed against theoretical values.

A Study on Convergence Family Function and parameter validation fusion of youth protection factor (융합적 가족 기능과 청소년 보호요인의 매개검증에 관한 연구)

  • Jang, Chun-Ok
    • Journal of the Korea Convergence Society
    • /
    • v.6 no.4
    • /
    • pp.121-126
    • /
    • 2015
  • Korea Youth Panel (2008) has 2 panels of the 5th year of Knowledge data to perform statistical analysis and regression analysis, the risk factors in the risk conditions of the family of functional deficits, protective factors, the relationship between the mediating effect of psychological adaptation and protective factors verification mechanisms and the psychological adaptation level it is an objective to analyze the protective factors that protect the high youth. To investigate the differences by frequency analysis and personal characteristics of the analyte's was performed t test using PASW (Predictive Analytics Software) 18.0. And to verify the effect of the parameters is performed rank regression analysis for verification of the effects of protection factors for adaptation. Rather than focusing on youth risk factors in social welfare practice field, focusing on processes and protective factors to reduce the risk factors, it is possible to convert the viewpoint overlooking the youth exposed to risk factors. Also, for young people experiencing difficulties that features loss of the family, it is determined that the prepared foundation which can be provided in the direction of social welfare practical intervention.

Design and Implementation of Simulator of Launch Control System (발사관제시스템 시뮬레이터의 설계 및 구현)

  • An, Jae-Chel;Moon, Kyung-Rok;Oh, Il-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.8
    • /
    • pp.657-665
    • /
    • 2016
  • Launch Control System(LCS) performs the pre-launch preparation and launch operation during launch campaign. The successful launch operation is basically influenced by hardware and software of LCS. Especially, a trivial errors in control algorithm can cause critical problem or disaster in launch operation. Therefore, the hidden or implicit errors should be distinguished and eliminated by the verification test in advance. In this paper, the design and implementation of hardware and software simulator which have already been used in LCS verification will be introduced. By presenting the detailed design and flowchart-based algorithms, we make other similar systems adopt the implementation philosophies of this paper. Especially, this paper emphasizes that all the simulation algorithms work on the self-controller in LCS without using separated computer or PLC.

Development of IFC Converter Prototype for Applying BIM in the Road Field (도로분야 BIM 적용을 위한 IFC 변환기 프로토타입 시스템 개발)

  • Seo, MyoungBae;Ju, KiBeom
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.4
    • /
    • pp.347-355
    • /
    • 2014
  • IFC converters and viewers, applicable in the construction field, are being actively developed while, in the civil engineering field, IFC schemata are being developed. To prove the IFC schema grammatically, the existing ISO 10303 30s' pre-processors and post-processors may be used. However, to visually prove the IFC model, the existing commercial 3D modeling software should be converted into the IFC schema of civil engineering field, and a viewer is needed to view it. Thus, this study developed a IFC converter and viewer prototype system to apply BIM in the road field. To express the road line, LandXML was analyzed, and IFC suitable for expressing shapes in the road field was designed. Also, an IFC suitable for bridges with focus on representative bridge structures such as abuts, piers and decks was designed. Further, a converter was developed using AutoCAD's Civil3D and Revit's 3rdp party tools, and software was also developed designed to combine each converted IFC model into one IFC. In addition, a viewer designed to view IFC in the road field was developed to prove the converted IFC. Eight major verification and examination items were selected and used in testing the converted model, and it was confirmed that the viewer normally viewed the IFC schema in the road field. The proposed IFC converter is expected to be used as a visual IFC verification tool in the road field.

Hierarchical Specification and Verification of Requirements using An Object-Oriented Petri Net (객체지향 페트리 넷을 이용한 계층적인 요구사항의 명세 및 검증)

  • Hong, Jang-Eui;Yoon, Il-Cheol;Bae, Doo-Hwan
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.2
    • /
    • pp.157-167
    • /
    • 2000
  • As the requirements of a software system become large and complex, it causes some problems such that requirements specification using formal methods becomes larger in its size and less understandable. In order to solve such problems, the concepts of modularity and object are adopted to specify the requirements. In addition, top-down and compositional approach to handle such requirements are also adopted. In our paper, we suggest an object-oriented Petri net, called HOONet, to hierarchically specify and verify the complex requirements by incorporating the concepts of modularity, object, abstraction and refinement into a formal method. Our HOONet method supports the incremental specification and verification of partially described or not yet fully analyzed requirements. We also show the applicability of our method by modeling and verifying the requirements of a reactor safety control system.

  • PDF

Security Verification of Wireless Remote Control System Using CPN (CPN을 이용한 무선원격제어시스템의 안전성 검증)

  • 이문구
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.13 no.5
    • /
    • pp.81-90
    • /
    • 2003
  • Existing web-based system management software solutions show some limitations in time and space. Moreover, they possess such as shortcomings unreliable error message announcements and difficulties with real-time assistance suppers and emergency measures. In order to solve these deficiencies, Wireless Remote Control System was designed and implemented. Wireless Remote Control System is able to manage and monitor remote systems by using mobile communication devices for instantaneous control. The implementation of Wireless Remote Control System leads to these security Problems as well as solutions to aforementioned issues with existing web-based system management software solutions. Therefore, this paper has focused on the security matters related to Wireless Remote Control System. The designed security functions include mobile device user authentication and target system access control. For security verification of these security functions introduced CPN(Coloured Petri Nets) which is capable of expressing every possible state for each stage. And then in this paper was verified its security through PI(Place Invariant) based on CPN(Coloured Petri Nets). The CPN expression and analysis method of the proposed security function can also be a useful method for analyzing other services in the future.