• 제목/요약/키워드: Ventrolateral medulla

검색결과 27건 처리시간 0.022초

고양이 연수 복외측부 세포의 동맥혈압 조절에 관한 연구 (Role of the ventrolateral medulla of the cat in vasomotor regulation)

  • 박국양;구용숙;김종환
    • Journal of Chest Surgery
    • /
    • 제23권5호
    • /
    • pp.833-843
    • /
    • 1990
  • Vasomotor areas were identified by stimulating various sites of the medulla electrically in adult cats anesthetized with a-chloralose and their correlation with somatosympathetic pressor or depressor responses was investigated. Followings are the results obtained: 1. Pressor areas were found in the rostral ventrolateral, the caudal ventrolateral and the rostral dorsolateral medulla. 2. Separate depressor areas were found dorsal and ventral to the rostral ventrolateral pressor area. 3. Some areas showed biphasic responses: depressor responses to low frequency[1 \ulcorner2 Hz] and pressor responses to high frequency[20 \ulcorner100 Hz] stimulation 4. Lesions on the rostral ventrolateral pressor areas abolished the somatosympathetic pressor responses to the stimulation of peripheral afferent nerves, while the depressor responses remained. Lesions on the caudal ventrolateral pressor area affected neither the pressor nor depressor responses to the peripheral nerve stimulation. 5. Lesions on the depressor areas resulted in decreased depressor responses to the peripheral nerve stimulation, but to a lesser degree than that resulted from lesions on the pressor areas. 6. A microinjection of glutamate solution to the pressor area resulted in a prolonged pressor response, while glutamate injection to the depressor areas did not elicit depressor responses. From the above results, it is concluded that there are separate pressor and depressor areas in the rostral medulla of cats and each area plays a role in somatosympathetic pressor and depressor responses, respectively.

  • PDF

Role of Rostroventrolateral Medulla in Somatosympathetic Pressor and Depressor Response Evoked by Peripheral Nerve Stimulation

  • Jun, Jae-Yeoul;Yeum, Cheol-Ho;Goo, Yong-Sook;Kim, Jun
    • The Korean Journal of Physiology
    • /
    • 제25권2호
    • /
    • pp.201-209
    • /
    • 1991
  • The rostral ventrolateral medulla (RVLM) has been established recently as a sympathoexcitatory area. The present study was conducted to investigate whether the somatosympathetic pressor and/or depressor responses are mediated through RVLM in cats anesthetized with ${\alpha}-chloralose$. An occipital craniectomy was performed and ventrolateral medulla were stimulated either electrically or chemically to evoke changes in arterial blood pressure. And then the effect of lesions in the ventrolateral medulla on the changes in blood pressure elicited by the peripheral nerve stimulation was observed. Followings are the results obtained: 1) Pressor areas were found in the ventrolateral medulla, lateral reticular nucleus and rostral dorsal area. 2) Depressor areas were found mainly in the ventrolateral medulla rostral to the pressor areas. 3) Some areas showed biphasic responses: a depressor response to lower frequency and a pressor response to higher frequency stimulation. 4) After electrical lesion in pressor area in RVLM, the somatosympathetic pressor response was abolished or depressed markedly. The somatosympathetic depressor response, however, remained after the lesion. 5) Electrical lesion in the depressor area abolished somatosympathetic depressor response. From the above results it is concluded that somatosympathetic pressor response is mediated through RVLM, while somatosympathetic depressor response is not mediated through RVLM.

  • PDF

Orthostatic hypotension with meningoencephalitis involving the rostral ventrolateral medulla

  • Young, Ik-Jung;Sunwoo, Mun Kyung;Lee, Hee Jin;Seo, Jeong Hee;Kim, Jeongyeon
    • Annals of Clinical Neurophysiology
    • /
    • 제21권1호
    • /
    • pp.66-69
    • /
    • 2019
  • Orthostatic hypotension (OH) is commonly associated with autonomic failure in the peripheral nervous system. Less often it is related to central lesions in brainstem and cerebellum. We describe a patient with OH associated with tuberculosis meningoencephalitis involving the brainstem including rostral ventrolateral medulla. This is the first case of OH resulting from focal lesions in the dorsal medulla in a patient with meningoencephalitis.

The Electrophysiological Characteristics of Medullospinal Tract Cells in Cat Ventrolateral Medulla

  • Lee, Woo-Yong;Kim, Sang-Jung;Kim, Jun
    • The Korean Journal of Physiology
    • /
    • 제25권2호
    • /
    • pp.211-221
    • /
    • 1991
  • Although the existence of nerve cells which determine the activity of sympathetic nervous system in ventrolateral medulla is advocated recently, there are wide varieties on the location and function of them according to authors. Present study aimed to identify and characterize the medullospinal tract cells in rostral and caudal medulla of cats .which branch to the lateral horn of the upper thoracic spinal cord. Cats were anesthetized with ${\alpha}-chloralose$. The upper thoracic spinal cord and floor of the IVth ventricle were exposed. Medullospinal tract cells in rostral and caudal medulla were identified by anti-dromic stimulation of the intermediolateral nucleus in the upper thoracic cord and then the location and physiological characteristics of these cells were studied. A total of seventy cells in medulla had constant latency and responded to high frequency stimulation to thoracic cord. Among them fifty-six cells were identified as medullospinal tract cells either by collision with spontaneous activities or activities evoked by sciatic nerve stimulation(27/56), or by determining the refractory period (29/56). Thirty-one of these cells branched to the contralateral thoracic spinal cord, twenty-one cells to the ipsilateral side and remaining four cells branched to both sides. The conduction velocity of cells branching to the contralateral side was $29{\pm}2.9\;m/sec$ and that of cells to the ipsilateral side was $39.1{\pm}6.0\;m/sec$. When medulla was devided into two by a horizontal plane at 3 mm rostral to the obex, fifty-one among seventy cells were in the rostral medulla and nineteen were in the caudal medulla. The conduction velocities of these two groups were $21.6{\pm}1.0\;and\;33.3{\pm}3.9\;m/sec$, respectively. In this study, we confirmed the existence of two groups of medullospinal tract cells in rostral and caudal ventrolateral medulla, which branch to the lateral horn of thoracic cord and these cells have relatively few spontaneous activities and rapid conduction velocity, so we concluded that these cells are different from the previously known sympatho-related cells in ventrolateral medulla.

  • PDF

Electrophysiological Study on Medullospinal Tract Cells Related to Somatosympathetic Reflex in the Cat

  • Kim, Sang-Jeong;Goo, Yong-Sook;Kim, Jun
    • The Korean Journal of Physiology
    • /
    • 제26권1호
    • /
    • pp.75-88
    • /
    • 1992
  • It is well established that neurons in ventrolateral medulla play a key role in determining the vasomotor tone. The purpose of present study is to identify sympathetic related, medullospinal tract neurons in ventrolateral medulla and to show that these mediate somato-sympathetic reflex. Medullospinal tract cells were identified by antidromic stimulation to intermediolateral nucleus (IML) of the second thoracic ($T_2$) spinal cord in anesthetized cats. Peripheral nerves were stimulated for orthodromic activation of these cells and peripheral receptive fields were determined. Post R wave histogram of unit and spike triggered averaging of sympathetic nerve discharge (SND) were used to define sympathetic related cell. A total of 113 neurons was recorded in ventrolateral medulla that had the axonal projections to $T_2$ spinal cord. Thirty four of these medullospinal cells showed spontaneous discharges and the others not. Between these two groups, rostro-caudal coordinate of the distribution from obex [$4.7{\pm}0.2\;$ (mean S.E.) mm, 4.1 0.1 mm], depth from dorsal surface ($5.5{\pm}0.2mm,\;4.9{\pm}0.1mm$ and conduction velocity ($9.9{\pm}1.7m/sec,\;16.7{\pm}1.9\;m/sec$) were significantly different (p<0.05). In spontaneously discharging group, characteristics of rostral and caudal groups were significantly different and we demonstrated that cells in rostral group mediate somatosympathetic reflex. From these results, we conclude that a certain portion of spontaneously discharging medullospinal tract cells in rostral ventrolateral medulla comprise the efferent outputs of somatosympathetic reflex to sympathetic preganglion neurons.

  • PDF

상부복외측 연수 심혈관계 세포의 체성교감 반사시 자발적 흥분발사특성 분석 :II. 최소 세포망 모델 (Spontaneous Firing Characteristics of Cardiovascular Neurons in the Rostral Ventrolateral Medulla during Somatosympathetic Reflex . 11. Minimal Neuronal Model)

  • 구용숙;노진아;차은종
    • 대한의용생체공학회:의공학회지
    • /
    • 제17권1호
    • /
    • pp.79-84
    • /
    • 1996
  • A number of experimental evidences suggest that the rnun ventrolateral medulla(RVLM) is the final common pathway in the regulation of arterial blood pressure. A Voup of neurons in the RVLM, called the cardiovascular neurons (UN), show spontaneous activity temporally synchronized with the periodic cardiac cycle. These neurons affect the sympathetic nerve discharge(SND), thus are believed to be responsible for blood pressure control. The present experiment identified 98 UVNs in 42 cats based on the temporal relationships between each neuron's activity with both the cardiac cycle and SWD. In 20 UWL changes of spontaneous firing rate(FR) during the somatosympathetic reflex(SSR) were studied Five different firing patterns were observed during the pressor and depressor responses of SSR, implying that they form an interconnected neuronal circuit interacting with one another to generate efferent signals for blood pressure regulation. In the following companion paper, the firing patterns of CVN are analyzed to develop a minimal neuronal circuit model explaining the present experimental outcome.

  • PDF

Cholinergic Activity Related to Cardiovascular Regulation in Rostral Ventrolateral Medulla of Spontaneously Hypertensive Rats

  • Lee, Seok-Yong;Lee, Sang-Bok
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제3권1호
    • /
    • pp.29-34
    • /
    • 1999
  • The hyperactivity of cholinergic system in the RVLM of spontaneously hypertensive rats (SHR) may contribute to the sustained elevation of blood pressure. However, the hyperactivity mechanisms of cholinergic system are controversial. Thus, to clarify the mechanisms of cholinergic hyperactivity in RVLM of the SHR, we studied the activities of enzymes that participate in the biosynthesis and degradation of acetylcholine (ACh) and the density of muscarinic receptors in RVLM of the 14- to 18-week-old SHR and age-marched Wistar Kyoto rats (WKY). Choline acetyltransferase activity was far greater in RVLM of SHR than that of WKY. $[^3H]ACh$ release from RVLM was also greater in SHR than in WKY. Acetylcholinesterase activity and $[^3H]NMS$ binding of RVLM slice of SHR were not significantly different from that of WKY. These results suggest that the enhanced cholinergic mechanisms in the RVLM of SHR is due to the enhanced presynaptic cholinergic tone rather than the altered postsynaptic mechanisms.

  • PDF

복외측 하부연수의 전기자극이 고양이의 척수후각세포의 활성에 미치는 영향 (Effects of Electrical Stimulation of the Caudal Ventrolateral Medulla on the Activity of Dorsal Horn Neurons of the Spinal Cord in the Cat)

  • 최윤정;고광호;오우택
    • Biomolecules & Therapeutics
    • /
    • 제1권1호
    • /
    • pp.37-43
    • /
    • 1993
  • Electrical or chemical stimulation of many areas in the brainstem modulates activity of dorsal horn neurons (DHN). This is known to be mediated by a population of bulbospinal neurons. Yet, little is known about responses of DHNs to stimulation of the caudal ventrolateral medulla (CVLM). Thus, the purpose of the present study is to see if there is any change in activity of DHNs when CVLM is stimulated electrically. Thirty-one DHNs were recorded from dorsal horn of the spinal cord. Fourteen DHNs (45%) were classified as wide dynamic range neurons and 9 (19%) were high threshold cells, and 4 (13%) and 4 (13%) were deep and low threshold neurons, respectively. Among 31 neurons tested for responses to stimulation of CVLM, 21 DHNs (68%) were inhibited by the electrical stimulation of CVLM ($200{\mu}A,\;100{\mu}s$ duration, 100 Hz), and 9 cells (39%) did not show any change in neuronal activity. One neuron was excited by the stimulation. The electrical stimulation of CVLM not only inhibited spontaneous activity of DHNs but also inhibited evoked responses of DHNs to somatic stimulation in the receptive field. These data suggest that CVLM is one of the pain-modulatory areas that control transmission of ascending information of noxious input to the brain from the spinal cord.

  • PDF

흰쥐 복외측 연수에서 심혈관 조절에 대한 Choline성 기전 (Cholinergic Mechanisms on Cardiovascular Regulation in the Ventrolateral Medulla of the Rat)

  • 김성윤;고택립;이상복
    • 대한약리학회지
    • /
    • 제23권2호
    • /
    • pp.77-85
    • /
    • 1987
  • 혈압과 심박수의 중추조절에 대한 복외측 연수의 choline성 수용체의 역할을 규명하기 위하여 본 연구를 실시하였다. urethane으로 마취한 흰쥐에서 신경흥분성 아미노산인 L-glutamate(300 ng/site)를 복외측 연수에 미세주사하여 승압부위 (VLPA)와 감압부위 (VLDA)를 각각 기능적으로 확인하였다. VLPA와 VLDA에 각각 여러가지 choline성 약물들과 choline성 수용체의 길항제들을 양측으로 미세주사하여 다음과 같은 결과를 관찰하였다. 1. VLPA에 ca.bachol(300 ng/site)를 미세주사한 후 현저한 혈압상승 및 빈맥이 일어났으며, 이 반응은 hexamethonium ($4\;{\mu}g/site$)의 전처치에 의하여 차단되지 않았다. 2. VLPA에 physostigmine (200 ng/site)과 oxot.emo.me (300 ng/site)을 미세주사한 후 각각 현저한 혈압상승이 일어났다. 3. VLPA에 atropine($4\;{\mu}g/site$)을 미세주사한 후 현저한 혈압하강 및 서맥이 일어났다. 4. VLDA에 acetylcholine(500 ng/site)과 dimethylphenylpipe.azinium (500 ng/site)을 미세주사한 후 각각 현저한 혈압하강 및 서맥이 일어났다. 5. VLDA에 acetylcholine(500 ng/site)을 미세주사한 후 유발된 혈압하강 및 서맥반응은 hexamethonium($4\;{\mu}g/site$) 전처치에 의하여 차단되었다. 이상의 결과로 보아 흰쥐의 복외측 연수의 승압부위에서는 muscarine성 수용체를 통하여 혈압상승 및 빈맥반응이 일어나고 감압부위에서는 nicotine성 수용체를 통하여 혈압하강 및 서맥 반응이 일어나는 것으로 사료된다.

  • PDF

요천수에 투사하는 연수 신경세포들의 분포 (Studies of Origins of Neurons in Medulla that Project to the Lumbosacral Spinal Cord of the Cat)

  • 조성도;고광호;오우택
    • 약학회지
    • /
    • 제35권6호
    • /
    • pp.486-496
    • /
    • 1991
  • Spinal parasympathetic outflows originate in the sacral parasympathetic nuclei. The sacral parasympathetic nuclei receive inputs from the brainstem. Many areas in the medulla appear to influence sympathetic outflow of the spinal cord. Whether neurons in these areas of the medulla may project to the lumbosacral cord to affect the parasympathetic outflow has not been studied clearly. Thus, this study was intended to investigate origins of cells projecting from the medulla to the sacral parasympathetic nuclei of the spinal cord. In 3 cats, horseradish peroxidase (HRP) was injected into the lower lumbar spinal cord. HRP labeled neurons were found mainly in the following areas: nucleus retroambiguus, nucleus tractus solitarius, raphe complex and ventrolateral area of the rostral medulla. Most of these areas are known to be involved in regulation of sympathetic activity, and, thus, these results indicate that these areas are likely to affect the sacral parasympathetic outflow as they do for the sympathetic nerves.

  • PDF