• Title/Summary/Keyword: Ventricular myocytes

Search Result 69, Processing Time 0.028 seconds

Decrease in $Ca^{2+}$ Storage in the Cardiac Sarcoplasmic Reticulum of Diabetic Rat

  • Kim, Won-Tae;Kim, Hae-Won;Kim, Young-Kee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.6
    • /
    • pp.725-732
    • /
    • 1998
  • In order to elucidate the molecular mechanism of the intracellular $Ca^{2+}$ overload frequently reported from diabetic heart, diabetic rats were induced by the administration of streptozotocin, the membrane vesicles of junctional SR (heavy SR, HSR) were isolated from the ventricular myocytes, and SR $Ca^{2+}$ uptake and SR $Ca^{2+}$ release were measured. The activity of SR $Ca^{2+}-ATPase$ was $562{\pm}14$ nmol/min/mg protein in control heart. The activity was decreased to $413{\pm}30$ nmol/min/mg protein in diabetic heart and it was partially recovered to $485{\pm}18$ nmol/min/mg protein in insulin-treated diabetic heart. A similar pattern was observed in SR $^{45}Ca^{2+}$ uptakes; the specific uptake was the highest in control heart and it was the lowest in diabetic heart. In SR $^{45}Ca^{2+}$ release experiment, the highest release, 45% of SR $^{45}Ca^{2+}$, was observed in control heart. The release of diabetic heart was 20% and it was 30% in insulin-treated diabetic heart. Our results showed that the activities of both SR $Ca^{2+}-ATPase$ and SR $Ca^{2+}$ release channel were decreased in diabetic heart. In order to evaluate how these two factors contribute to SR $Ca^{2+}$ storage, the activity of SR $Ca^{2+}-ATPase$ was measured in the uncoupled leaky vesicles. The uncoupling effect which is able to increase the activity of SR $Ca^{2+}-ATPase$ was observed in control heart; however, no significant increments of SR $Ca^{2+}-ATPase$ activities were measured in both diabetic and insulin-treated diabetic rats. These results represent that the $Ca^{2+}$ storage in SR is significantly depressed and, therefore, $Ca^{2+}-sequestering$ activity of SR may be also depressed in diabetic heart.

  • PDF

Wide Spectrum of Inhibitory Effects of Sertraline on Cardiac Ion Channels

  • Lee, Hyang-Ae;Kim, Ki-Suk;Hyun, Sung-Ae;Park, Sung-Gurl;Kim, Sung-Joon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.5
    • /
    • pp.327-332
    • /
    • 2012
  • Sertraline is a commonly used antidepressant of the selective serotonin reuptake inhibitors (SSRIs) class. In these experiments, we have used the whole cell patch clamp technique to examine the effects of sertraline on the major cardiac ion channels expressed in HEK293 cells and the native voltage-gated $Ca^{2+}$ channels in rat ventricular myocytes. According to the results, sertraline is a potent blocker of cardiac $K^+$ channels, such as hERG, $I_{Ks}$ and $I_{K1}$. The rank order of inhibitory potency was hERG > $I_{K1}$ > $I_{Ks}$ with $IC_{50}$ values of 0.7, 10.5, and 15.2 ${\mu}M$, respectively. In addition to $K^+$ channels, sertraline also inhibited $I_{Na}$ and $I_{Ca}$, and the $IC_{50}$ values are 6.1 and 2.6 ${\mu}M$, respectively. Modification of these ion channels by sertraline could induce changes of the cardiac action potential duration and QT interval, and might result in cardiac arrhythmia.

Response of $I_{Kr}$ and hERG Currents to the Antipsychotics Tiapride and Sulpiride

  • Jo, Su-Hyun;Lee, So-Young
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.5
    • /
    • pp.305-310
    • /
    • 2010
  • The human $ether$-$a$-$go$-$go$-related gene ($hERG$) channel is important for repolarization in human myocardium and is a common target for drugs that prolong the QT interval. We studied the effects of two antipsychotics, tiapride and sulpiride, on hERG channels expressed in $Xenopus$ oocytes and also on delayed rectifier $K^+$ currents in guinea pig cardiomyocytes. Neither the amplitude of the hERG outward currents measured at the end of the voltage pulse, nor the amplitude of hERG tail currents, showed any concentration-dependent changes with either tiapride or sulpiride ($3{\sim}300{\mu}M$). However, our findings did show that tiapride increased the potential for half-maximal activation ($V_{1/2}$) of HERG at $10{\sim}300{\mu}M$, whereas sulpiride increased the maximum conductance ($G_{max}$) at 3, 10 and $100{\mu}M$. In guinea pig ventricular myocytes, bath applications of 100 and $500{\mu}M$ tiapride at $36^{\circ}C$ blocked rapidly activating delayed rectifier $K^+$ current ($I_{Kr}$) by 40.3% and 70.0%, respectively. Also, sulpiride at 100 and $500{\mu}M$ blocked $I_{Kr}$ by 38.9% and 76.5%, respectively. However, neither tiapride nor sulpiride significantly affected the slowly activating delayed rectifier $K^+$ current ($I_{Ks}$) at the same concentrations. Our findings suggest that the concentrations of the antipsychotics required to evoke a 50% inhibition of IKr are well above the reported therapeutic plasma concentrations of free and total compound.

Lithspermic acid-A slows down the inactivation kinetics of cardiac $Na^+$ current by intracellular $Ca^{2+}$-dependent mechanisms

  • Yoon, Jin-Young;Hyuncheol Oh;Ho, Won-Kyung;Lee, Suk-Ho
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.46-46
    • /
    • 2003
  • Salviae Miltiorrhizae Radix has been used for treatment of cardiovascular diseases in oriental medicine. To investigate the possible involvement of cardiac ion channel in this effect, we examined electrophysiological effects of the extract of Salviae Miltiorrhizae Radix on action potentials and ionic currents in rat ventricular myocytes. The extracts of Salviae Miltiorrhizae Radix were fractionated into nine fractions, and the effect of each fraction on action potential was tested. The fraction containing monomethyl lithospermic acid-A (LSA-A) induced a significant prolongation of action potential duration (APD). LSA-B which is a major component of Salviae Miltiorrhizae Radix, however, did not cause a significant effect. In voltage clamp experiments, the effects of LSA-A on K currents, Ca currents and Na currents were tested. Neither K currents nor L-type Ca currents were affected by LSA-A. On the contrary, LSA-A significantly slowed down the inactivation kinetics of the Na current with no effect on the fast component of the inactivation process. The amplitude of the peak current and the voltage-dependence of activation were not changed by LSA-A. The effect of LSA-A on Na current was abolished when high concentration of $Ca^{2+}$ buffer (10 mM BAPTA) was included in the pipette solution or when Ca2+ current was blocked by nicardipine (1 $\mu$M) in the bath solution.n.

  • PDF

A Novel Nicotinamide Adenine Dinucleotide Correction Method for Mitochondrial Ca2+ Measurement with FURA-2-FF in Single Permeabilized Ventricular Myocytes of Rat

  • Lee, Jeong Hoon;Ha, Jeong Mi;Leem, Chae Hun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.4
    • /
    • pp.373-382
    • /
    • 2015
  • Fura-2 analogs are ratiometric fluoroprobes that are widely used for the quantitative measurement of [$Ca^{2+}$]. However, the dye usage is intrinsically limited, as the dyes require ultraviolet (UV) excitation, which can also generate great interference, mainly from nicotinamide adenine dinucleotide (NADH) autofluorescence. Specifically, this limitation causes serious problems for the quantitative measurement of mitochondrial [$Ca^{2+}$], as no available ratiometric dyes are excited in the visible range. Thus, NADH interference cannot be avoided during quantitative measurement of [$Ca^{2+}$] because the majority of NADH is located in the mitochondria. The emission intensity ratio of two different excitation wavelengths must be constant when the fluorescent dye concentration is the same. In accordance with this principle, we developed a novel online method that corrected NADH and Fura-2-FF interference. We simultaneously measured multiple parameters, including NADH, [$Ca^{2+}$], and pH/mitochondrial membrane potential; Fura-2-FF for mitochondrial [$Ca^{2+}$] and TMRE for ${\Psi}_m$ or carboxy-SNARF-1 for pH were used. With this novel method, we found that the resting mitochondrial [$Ca^{2+}$] concentration was $1.03{\mu}M$. This $1{\mu}M$ cytosolic $Ca^{2+}$ could theoretically increase to more than 100 mM in mitochondria. However, the mitochondrial [$Ca^{2+}$] increase was limited to ${\sim}30{\mu}M$ in the presence of $1{\mu}M$ cytosolic $Ca^{2+}$. Our method solved the problem of NADH signal contamination during the use of Fura-2 analogs, and therefore the method may be useful when NADH interference is expected.

Antitumor profiles and cardiac electrophysiological effects of aurora kinase inhibitor ZM447439

  • Lee, Hyang-Ae;Kwon, Miso;Kim, Hyeon-A;Kim, Ki-Suk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.5
    • /
    • pp.393-402
    • /
    • 2019
  • Aurora kinases inhibitors, including ZM447439 (ZM), which suppress cell division, have attracted a great deal of attention as potential novel anti-cancer drugs. Several recent studies have confirmed the anti-cancer effects of ZM in various cancer cell lines. However, there have been no studies regarding the cardiac safety of this agent. We performed several cytotoxicity, invasion and migration assays to examine the anti-cancer effects of ZM. To evaluate the potential effects of ZM on cardiac repolarisation, whole-cell patch-clamp experiments were performed with human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and cells with heterogeneous cardiac ion channel expression. We also conducted a contractility assay with rat ventricular myocytes to determine the effects of ZM on myocardial contraction and/or relaxation. In tests to determine in vitro efficacy, ZM inhibited the proliferation of A549, H1299 (lung cancer), MCF-7 (breast cancer) and HepG2 (hepatoma) cell lines with $IC_{50}$ in the submicromolar range, and attenuated the invasive and metastatic capacity of A549 cells. In cardiac toxicity testing, ZM did not significantly affect $I_{Na}$, $I_{Ks}$ or $I_{K1}$, but decreased $I_{hERG}$ in a dose-dependent manner ($IC_{50}$: $6.53{\mu}M$). In action potential (AP) assay using hiPSC-CMs, ZM did not induce any changes in AP parameters up to $3{\mu}M$, but it at $10{\mu}M$ induced prolongation of AP duration. In summary, ZM showed potent broad-spectrum anti-tumor activity, but relatively low levels of cardiac side effects compared to the effective doses to tumor. Therefore, ZM has a potential to be a candidate as an anti-cancer with low cardiac toxicity.

Effects of Diltiazem on Isoproterenol-induced Myocardial Cell Wounding in the Rabbit (Isoproterenol 투여로 유발된 심근세포 손상에 미치는 diltiazem의 영향)

  • Kim, Hyun;Chang, Dae-Yung;Rah, Bpng-Jin;Kim, Ho-Dirk
    • Applied Microscopy
    • /
    • v.27 no.2
    • /
    • pp.121-130
    • /
    • 1997
  • It has been demonstrated that majority of cells in the mammalian body such as myocytes and epithelial cells of skin and intestine respond to mechanical force or environmental factors and exhibit partial disruption of cell membrane, i. e., cell wounding, even in a physiological condition. Myocardial cells are rather apt to be wounded than other cells since they are definitely exposed to mechanical stress by contraction-relaxation and blood flow. However, the mechanism how myocardial cells protect themselves against cell wounding is not yet clarified. On this background, the present study was performed to elucidate whether albumin leakage is related to cell wounding and to assess whether diltiazem, a potent calcium channel blocker, is beneficial in isoproterenol-induced cell wounding in the heart. Hearts isolated from New Zealand White rabbits ($1.5\sim2.0kg$ body weight, n=20) were perfused with Tyrode solution by Langendorff technique. After stabilization of baseline hemodynamics, the hearts were subjected to bolus administration of isoproterenol and diltiazem as following order: $1.6{\mu}M$ isoproterenol at zero min (the beginning point): $16{\mu}M$ diltiazem at 20min; $1.6{\mu}M$ isoproterenol at 25min; $16{\mu}M$ isoproterenol at 45 min; $160{\mu}M$ diltiazem at 65 min; $16{\mu}M$ isoproterenol at 70 min. During all experiments, the left ventricular function was recorded, albumin leakage in the coronary effluents was analyzed by electrophoresis and Western blot, and myocardial cell membranes were examined by conventional transmission electron microscopy. Data were analyzed by t-test and linear regression test. Isoproterenol significantly increased the inotropic and chronotropic contractions, coronary flow, and frequency of arrhythmia, however, diltiazem did not influence on hemodynamics except decrease in the frequency of arrhythmia and a slight decrease in contractility. Isoproterenol also resulted partial disruption of myocardial cell membrane and inclose in albumin leakage, while diltiazem pretreatment showed number of electron-dense plaques in the cell membrane and a tendency of decrease in albumin leakage. These results indicate that albumin leakage may be an indirect index of cell wounding in the heart and diltiazem nay be beneficial to protect myocardial cells against isoproterenol-induced cell wounding. It is likely that diltiazem promotes resealing process of the cell membrane.

  • PDF