• Title/Summary/Keyword: Ventilation Characteristics

Search Result 635, Processing Time 0.024 seconds

A study on the ventilation characteristics and design of transverse ventilation system for road tunnel (도로터널 횡류환기방식의 환기특성 및 시스템 설계 관한 연구)

  • Ryu, Ji-Oh;Kim, Hyo-Gyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.305-315
    • /
    • 2018
  • In this study, the ventilation characteristics and the relationships between the required ventilation flow rate and the ventilation system flow rate was investigated by numerical method for the optimum design of the transverse ventilation and semi-transverse ventilation system in road tunnels. The following results were obtained. In supply exhaust transverse ventilation system, the system supply-exhaust air flow rate is theoretically equal to the difference between the required ventilation flow rate and natural ventilation flow rate. However, it is shown that it increases by about 10% in the analysis results. And, in the case of the longitudinal air flow rate is increased by installed jet fans, ventilation system air flow rate is reduced. However, as the longitudinal air flow rate increases, the concentration of pollutants in the tunnel decreases, so the exhaust effect of pollutants decreases, and the effect of reducing the system air flow rate is decreased. In case of semi-transverse with only air supply, ventilation system air flow rate is equal to required ventilation air flow rate when tunnel inlet velocity is negative, but results is shown it is increased within about 13.3%. Also, it was found that ventilation effect can not be expected even if the jet fans are increased when the tunnel inlet velocity is negative.

A Study on ventilation characteristics in bidirectional traffic tunnels - with emphasis on the natural ventilation (대면통행 터널의 환기특성에 관한 연구 - 자연환기량을 중심으로)

  • Kim, Hyo-Gyu;Hong, Yoo-Jung;Yoo, Yong-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.6
    • /
    • pp.561-571
    • /
    • 2014
  • The standards of ventilation system for bi-directional tunnel have not been established now. For this reason, with regard to the bi-directional tunnel below 1km, some problems have been appeared in ventilation capacity designing and in determining whether the mechanical ventilation system is needed or not for each case. In this study, we examine the characteristics of natural ventilations, analyze ongoing ventilation design cases for bi-directional tunnels and classify those cases into two groups. This study is carried out about the capability of using natural ventilating system by calculation of reasonable ventilation capacity in bi-directional tunnel and review of relationship between natural wind speed ($Vr^*$) and required speed(Vreq). This paper aims at providing a basis data for bi-directional tunnel ventilation design standards.

A Study on Characteristics of Main Indoor Air Pollutants and Ventilation in Nursery Facilities (어린이집 실내공기 중 주요 오염물질의 특성 및 환기에 관한 연구)

  • Kim, Sang Cheol;Kang, Byeong-Chang;Lee, Sang-Uk;Kim, Gi-Doo;Seo, Won-Ho;Kim, Jong-Heon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.3
    • /
    • pp.245-250
    • /
    • 2014
  • As the number of nursery facilities and infants who stay there is continuously increasing, IAQ (Indoor Air Quality) of nursery facilities should be managed strictly and thoroughly because infants are more susceptible to infections due to their low resistivity. In this study the characteristics of IAQ and ventilation associated factors were investigaed for suggesting a desirable condition for IAQ management. Environmental factors were not much related to IAQ characteristics rather than internal factors such as structures of the room. And the positive effect of ventilation on IAQ was obvious and seemed to hinge on factors related to window area especially window/wall ratio. Results of this study indicate that the structure with broader window area of a room and frequnet ventilation can be an effective way for keeping IAQ of nursery facilities clean and safe.

On-site Application of a Vehicle Tunnel Ventilation Simulator (도로터널 환기시뮬레이션 모델 현장적용 연구)

  • 이창우;김효규
    • Tunnel and Underground Space
    • /
    • v.11 no.4
    • /
    • pp.319-327
    • /
    • 2001
  • Introduction of new design tools has been required to optimally design and operate the ventilation system of long vehicle tunnels.. The demand has led to wide spread use of the simulation technique throughout the would to analysis the dynamic relationship among the variables associated with vehicle tunnel ventilation. This paper aims at performing on-site study at local tunnels to test the applicability of NETVEN, a simulation model vehicle tunnel ventilation. The study was carried out at four urban as well as highway tunnels model of vehicle tunnel ventilation. The study was carried out at four urban as well as highway tunnels employing different ventilation systems as well as traffic methods. There were some discrepancies sound between the simulation output and measurements and the following four factors are considered to mainly cause those disagreement. (1) The real situation shows distinctive transient and retarding characteristics with respect to air flow and contaminant dispersion, while ventilation forces are not steady-state and in particular those traffic and climatic variables show significant instantaneous variation. (3) Near the exit portal, the CO levels show bigger differences. The general trend is that data with higher CO concentrations carry bigger discrepancies. Turbulent diffusion is though to be the main reason for it and also contribute to the fact hat the highest CO concentrations are found at the locations somewhat inward, not at the exit portals. (4) Higher traffic rate results in higher discrepancies of ventilation velocity. Along with the exhaust characteristics, the vehicle aerodynamic characteristics need to be studied continuously in order to reduce the velocity disagreement.

  • PDF

A Proposal of Hybrid Cooling System Coupled with Radiation Panel Cooling and Natural Ventilation (자연환기와 복사냉방을 병용한 하이브리드 시스템의 제안)

  • 송두삼
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.6
    • /
    • pp.543-550
    • /
    • 2003
  • In order to saving the energy for HVAC system of buildings, utilization of wind-induced cross ventilation is thought to be promising. However, utilization of natural ventilation alone is not sufficient for maintaining the human thermal-comfort such as in hot and humid regions. A hybrid air conditioning system with a controlled natural ventilation system, or combination of natural ventilation with mechanical air conditioning is thought to overcome the deficiency of wind-driven cross ventilation and to have significant effects on energy reduction. This paper describes a concept of hybrid system and propose a new type of hybrid system using radiational cooling with wind-induced cross ventilation. Moreover, a radiational cooling system is compared with an all-air cooling system. The characteristics of the indoor environment will be examined through CFD (Computational Fluid Dynamics) simulation, which is coupled with a radiation heat transfer simulation and with HVAC control in which the PMV value for the human model in the center of the room is controlled to attain the target value.

Effect of Aspect Ratio and Location of Outlets on Ventilation Performance in a Dry Room (Dry Room에서 종횡비와 배기구 위치가 환기성능에 미치는 영향)

  • 이관수;임광옥;최석호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.4
    • /
    • pp.324-331
    • /
    • 2002
  • The characteristics of moisture ventilation in a dry room are studied numerically The behaviors of moisture ventilation are analyzed by varying the aspect ratio of the horizontal plane and for various positions of the outlets in the room. Three different ventilation efficiencies have been used to examine the effect of the longitudinal arrangement of outlets and transverse arrangement of outlets for each aspect ratio on ventilation inside the room. It is shown that the ventilation efficiency in the dry room can be improved by arranging the outlets transversely in the cases that the aspect ratio is less than three and longitudinally in the cases that it is greater than four.

PIV Measurements of Ventilation Flow from the Air Vent of a Real Passenger Car (거대 화상용 PIV 시스템을 이용한 실차 내부 공기벨트 토출흐름의 속도장 측정 연구)

  • Lee, Jin-Pyung;Kim, Hak-Lim;Lee, Sang-Joon
    • Journal of the Korean Society of Visualization
    • /
    • v.7 no.1
    • /
    • pp.3-8
    • /
    • 2009
  • Most vehicles have a heating, ventilating and air conditioning (HVAC) device to control the thermal condition and to make comfortable environment in the passenger compartment. The improvement of ventilation flow inside the passenger compartment is crucial for providing comfortable environment. For this, better understanding on the variation of flow characteristics of ventilation air inside the passenger compartment with respect to various ventilation modes is strongly required. Most previous studies on the ventilation flow in a car cabin were carried out using computational fluid dynamics (CFD) analysis or scale-down water-model experiments. In this study, whole ventilation flow discharged from the air vent of a real passenger car was measured using a special PIV (particle image velocimetry) system for large-size FOV (field of view). Under real recirculation ventilation condition, the spatial distributions of stream-wise turbulence intensity and mean velocity were measured in the vortical panel-duct center plane under the panel ventilation mode. These experimental data would be useful for understanding the detailed flow structure of real ventilation flow and validating numerical predictions.

Measurements and CFD Analysis for Release Rate of CO2 and Characteristics of Natural Ventilation in Lecture Room (강의실 CO2 발생률과 자연환기 특성의 측정 및 CFD 분석)

  • Lee, Donghae;Choi, Youngbo
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.1
    • /
    • pp.86-94
    • /
    • 2021
  • Lecture rooms are crowded with many attendees. Moreover, they rely significantly on the natural ventilation through windows for removing and controlling indoor contaminants such as CO2. With the aim of broadening the understanding of the characteristics of natural ventilation phenomena in lecture rooms, the average individual CO2 release rates of attendees were measured during the course of a lecture and compared with previously reported CO2 release rates. In addition, the effects of natural ventilation through windows on the time-variant CO2 concentrations in the center of the lecture room were measured and analyzed. Moreover, details about the overall and regional CO2 concentrations, as well as the air flows in the lecture room, were simulated and analyzed with computational fluid dynamics software, Fluent 2020 R2. It was found that the average individual CO2 release rates were slightly slower than previously reported rates. The local CO2 concentrations in the lecture room for regions with a high density of attendees increased over a short period of time, although the natural ventilation was already started by opening the windows. The overall CO2 concentration in the lecture room rapidly decreased in the early stage of ventilation, but declined very slowly after a longer period of ventilation time. Therefore, in order to enhance the efficiency of a lecture room's natural ventilation, it is recommended to homogeneously distribute the attendees in the lecture room, and to frequently open the windows for short periods of time.

Evaluation of Ventilation Effectiveness Before and After Kitchen Renovation in Schools of Gyeongsangnam-do (경남지역 학교 급식조리실 개선 전후 환기성능 평가)

  • Jongwon Son;Taehyeung Kim;Hyunchul Ha;Byounghoon Kim;Kritana Prueksakorn
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.34 no.1
    • /
    • pp.35-47
    • /
    • 2024
  • Objectives: Many cases of lung cancer have been reported by school kitchen workers as occupational cancer. Twenty-eight schools in Gyeongsangnam-do Province were selected to evaluate the effect of improved kitchen ventilation systems. Ventilation characteristics before and after renovation were compared and design techniques were identified. Methods: In the design stage for kitchen ventilation systems, expert intervention was used to improve the designs. Ventilation characteristics and air quality were evaluated before and after the renovations. Hood face velocity and fan flow rate were measured and the smoke visualization technique was used to evaluate the capability of protecting worker's breathing zone. The concentrations of PM0.3 were measured at points not adjacent to cooking equipment because these concentrations fluctuate greatly. Results: Mean hood face velocity increased from 0.29 m/s before renovation to 0.7m/s after renovation. The concentrations of PM0.3 showed a roughly 95% reduction. Concentrations of CO showed more than a 75% reduction. Smoke visualization showed greater protection of workers' breathing zone. Conclusions: Advanced design techniques for school kitchen ventilation systems were applied to renovate old kitchen ventilation systems. The performance of the new kitchen ventilation systems was nearly excellent. Further improvement of design techniques is still needed, however.

A Study on the Characteristics of Heating and Cooling Loads of Standard Chicken Houses in South Korea (국내 표준계사의 냉난방부하 특성 연구)

  • Kwon, Young-Cheol
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.10
    • /
    • pp.235-243
    • /
    • 2019
  • In South Korea, millions of poultry have died due to repeated heat waves every year. The purpose of this study is to analyze the characteristics of heating and cooling loads of chicken houses in Korea and to present an effective insulation and ventilation measures to minimize the damage of poultry due to summer heat wave and to save energy in chicken houses in winter. The heating and cooling loads of standard chicken house were calculated. As a result of the calculation of maximum heating load based on the minimum ventilation rate in winter, the outdoor air temperature requiring heating was $6{\sim}7^{\circ}C$ to keep the indoor air temperature of chicken houses as $24^{\circ}C$. The peak cooling load of chicken houses was mostly taken by the heat generated by chickens and the heat gain due to ventilation. The heat gain through building envelopes was as small as neglectable. Most of chicken houses is usually cooled by gigantic forced ventilation in summer in Korea. When the chicken houses are cooled by electric cooling machine such as cooler or air conditioner, it is more effective to keep minimum ventilation rate to reduce the maximum cooling load. To lower the temperature of supplying water to cooling pad, it is recommended to use the underground water below 10 meters from the ground if there is abundant underground water.