• 제목/요약/키워드: Ventilated Cavity

검색결과 15건 처리시간 0.022초

원판 캐비테이터의 환기 초공동에 대한 실험적 연구 (An Experimental Study on Ventilated Supercavitation of the Disk Cavitator)

  • 김병진;최정규;김형태
    • 대한조선학회논문집
    • /
    • 제52권3호
    • /
    • pp.236-247
    • /
    • 2015
  • In this paper, the experimental equipments for ventilated supercavitation in cavitation tunnel is constructed and the basic data of ventilated supercavitation regard to the entrainment coefficient and Froude number is fulfilled. The experiments are conducted for the disk cavitator with injecting air and the pressure inside cavity and the shape of cavity are measured. As the entrainment coefficient increases while the Froude number is kept constant, the ventilated cavitation number decreases to a minimum value which decreases no more even with increasing the air entrainment. The minimum value of ventilated cavitation number, caused by the blockage effect, decreases according to increasing the diameter ratio of test section to cavitator. The cavity length is rapidly enlarged near the minimum cavitation number. In low Froude numbers, the cavity tail is floating up due to buoyancy and the air inside the cavity is evacuated from its rear end with twin-vortex hollow tubes. However, in high Froude numbers, the buoyancy effect is almost negligible and there is no more twin-vortex tubes so that the cavity shape becomes close to axisymmetric. In order to measure the cavity length and width, the two methods, which are to be based on the cavity shapes and the maximum width of cavity, are applied. As the entrainment coefficient increases after the ventilated cavitation number gets down to the minimum cavitation number, the cavity length still increases gradually. These phenomenon can be confirmed by the measurement using the method based on the cavity shapes. On the other hand, when the method based on the maximum width of cavity is used, the length and width of the cavity agree well with a semi-empirical formular of natural cavity. So the method based on the maximum width of cavity can be a valid method for cavitator design.

커튼월의 단열 향상 및 결로 방지를 위한 통기구조 적용방안 연구 (Application of Ventilated Cavity for Enhancing Insulation and Preventing Condensation of Curtain-wall System)

  • 이선우
    • 설비공학논문집
    • /
    • 제29권1호
    • /
    • pp.21-28
    • /
    • 2017
  • Curtain-wall systems have been widely applied to buildings because of their lightweight and constructability characteristics. However, as curtain-wall systems include many building materials, vapor barriers can become damaged and condensation can occur. Due to the material properties of stone curtain-walls, the external appearance and structure of a building could be damaged and the insulating performance of the curtain-wall could be worse. Natural ventilation using an air cavity in a curtain-wall is expected to be effective for the prevention of condensation in inner walls and for the reduction of building cooling energy use in the summer. The purpose of this experimental study is to analyze the influence of a ventilated cavity on the insulating performance of a curtain-wall and the ventilated cavity depth and ratio of top opening needed to prevent condensation in a curtain-wall.

수중 운동체 주변에 형성되는 환기 초공동(ventilated supercavitation) 현상 가시화 (Visualization of ventilated supercavitation phenomena around a moving underwater body)

  • 정재호;조연우
    • 한국가시화정보학회지
    • /
    • 제13권1호
    • /
    • pp.26-29
    • /
    • 2015
  • A laboratory experiment was carried out to observe and visualize ventilated supercavitation phenomena around a moving underwater body which is attached to a newly designed high-speed (Max. 20 m/s) carriage system in a wave tank. Compared to the existing many other experimental studies using cavitation tunnels, where the body is at rest and the fluid is in motion in a bounded or closed environment, the present experimental study deals with super-cavity formation in unbounded or free-surface bounded environments, where the body is in motion and the fluid is at rest. Main attention is paid to the effective visualization of the steady-state cavity formations around a moving body and, those cavity formations are reported pictorially according to the body speed, ventilated air-pressure, and with or without a cavitator.

분사가스 온도에 따른 수중운동체 주위 초공동 특성 분석을 위한 수치해석 (Numerical Analysis for Supercavitation Characteristics around Underwater Vehicle according to Ventilated Gas Temperature)

  • 황현성;박원규;김동현;김동현
    • 한국군사과학기술학회지
    • /
    • 제25권5호
    • /
    • pp.487-500
    • /
    • 2022
  • Supercavitation is a phenomenon in which the cavity covers the entire underwater vehicle. The purpose of this paper is to compare and analyze the thermal effect on the cavity characteristics by changing the ventilated gas temperature through computational analysis. For this study, a homogeneous mixture model based on the 3D Navier-Stokes equation was used. As a phase change model, it is its own code considering both pressure change and temperature change. A dimensionless number Tm was presented to analyze the numerical results, and as the Tm increased, the cavity length increased by about 3.6 times and the cavity width by about 3.3 times at 393.15 K compared to room temperature. Analyzing these thermal effects, it was confirmed that rapid heat exchange and heat transfer between the gas phase and the liquid phase occurred at the location where the ventilated gas was sprayed, affecting the cavity characteristics. In addition, it can be confirmed that the initial cavity surface becomes unstable as the ventilated gas temperature increases, and it can be confirmed based on the numerical analysis results that the critical temperature at which the cavity surface becomes unstable is 373.15 K.

원형 캐비테이터의 받음각에 따른 환기초공동 형상 예측 연구 (The prediction of ventilated supercavitation shapes according to the angle of attack of a circular cavitator)

  • 이종주;김민재;백부근;김경천
    • 한국가시화정보학회지
    • /
    • 제19권3호
    • /
    • pp.22-30
    • /
    • 2021
  • Ventilated cavity shapes by varying angle of attack of a circular cavitator were predicted based on Logvinovich's Independence Principle in order to verify the cavity shape prediction method. The prediction results were compared with model experiments conducted in the high-speed cavitation tunnel. In the prediction of the cavity centerline, the movement of the cavity centerline due to the effect of gravity and cavitator's angle of attack were well predicted. In the prediction of the cavity contour, it was found that the cavity edge prediction error increased as the angle of attack increased. The error of the upper cavity contour was small at the positive angle of attack, and the error of the lower cavity contour was small at the negative angle of attack.

분사형 초공동 수중운동체의 가스 분사량 제어 연구 (Studies on Ventilation Control for a Ventilated Supercavitating Vehicle)

  • 김선홍;김낙완
    • 대한조선학회논문집
    • /
    • 제52권3호
    • /
    • pp.206-221
    • /
    • 2015
  • Supercavitation is a modern technique which can be used to surround an underwater vehicle with a bubble in order to reduce the resistance of the vehicle. When the vehicle is at low speed in the deep sea, the cavitation number is relatively big and it is difficult to generate a cavity large enough to envelope the vehicle. In this condition, the artificial cavity, called ventilated cavity, can be used to solve this problem by supplying gas into the cavity and can maintain supercavitating condition. In this paper, a relationship between the ventilation gas supply rate and the cavity shape is determined. Based on the relationship a ventilation rate control is developed to maintain the supercavitating state. The performance of the ventilation control is verified with a depth change control. In addition, dynamics modeling for the supercavitating vehicle is performed by defining forces and moments acting on the vehicle body in contact with water. Simulation results show that the ventilation control can maintain the supercavity of an underwater vehicle at low speed in the deep sea.

Mock-up 실험을 통한 통기성 커튼월의 단열 및 결로방지 성능평가 (An Experimental Study on Insulation and Preventing Condensation Performance of Ventilated Curtain Wall)

  • 이미진;이선우;여명석;김광우
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.1081-1086
    • /
    • 2006
  • Curtainwall systems has been applied to buildings widely for constructability. However, as cutainwall system include many building materials, they become to damaged vapor barrier and incur condensation. Natural ventilation of an air cavity in a curtainwall is expected to be an prevention of condensation in inner wall and reduce cooling energy in summer. The objective of this experimental study is to evaluating the insulation and condensation Performance of ventilated curtainwall with ventilated cavity depth and ratio of opening area.

  • PDF

팬을 부착한 이중외피의 이론적 검토 및 적용성에 대한 실험 연구 (Theoretical Review and Experiment on Applicability of Double Skin Facade Ventilated by Fans)

  • 임지혜;손장열
    • 설비공학논문집
    • /
    • 제22권9호
    • /
    • pp.605-613
    • /
    • 2010
  • Double skin facade(DSF) ventilated by fans consists of a normal external and an internal envelope. In this glass layer, the installed fan replaces an air inlet for the control of air flow through the cavity. The purpose of this paper is to investigate physical theory and to analyze the applicability of fans installed in a DSF. The experiment was conducted in 2 rooms. One room has a DSF with installed fans and the other one has a typical window. The room ventilated through a DSF which fans are installed was always kept warmer than the other room, ventilated directly from the outdoors. The average increase of the supplied air temperature through the DSF ventilated by fans was $6.54^{\circ}C$ at 78CMH, $6.2^{\circ}C$ at 95CMH, and $3.7^{\circ}C$ at 120CMH. As a result, the DSF with installed fans was appropriate for installation in rooms. It supplies outdoor fresh air heated through a cavity and ventilates a constant air volume.

초공동 수중운동체의 천이구간 특성을 고려한 동역학 모델링 및 심도제어 연구 (Study on Dynamics Modeling and Depth Control for a Supercavitating Underwater Vehicle in Transition Phase)

  • 김선홍;김낙완
    • 대한조선학회논문집
    • /
    • 제51권1호
    • /
    • pp.88-98
    • /
    • 2014
  • A supercavitation is modern technology that can be used to reduce the frictional resistance of the underwater vehicle. In the process of reaching the supercavity condition which cavity envelops whole vehicle body, a vehicle passes through transition phase from fully-wetted to supercaviting operation. During this phase of flight, unsteady hydrodynamic forces and moments are created by partial cavity. In this paper, analytical and numerical investigations into the dynamics of supercavitating vehicle in transition phase are presented. The ventilated cavity model is used to lead rapid supercavity condition, when the cavitation number is relatively high. Immersion depth of fins and body, which is decided by the cavity profile, is calculated to determine hydrodynamical effects on the body. Additionally, the frictional drag reduction associated by the downstream flow is considered. Numerical simulation for depth tracking control is performed to verify modeling quality using PID controller. Depth command is transformed to attitude control using double loop control structure.

자유표면 영향을 고려한 환기공동 전산유동해석 (NUMERICAL ANALYSIS OF VENTILATED CAVITATION WITH FREE SURFACE EFFECTS)

  • 김미선;김호윤;하콩투;박원규
    • 한국전산유체공학회지
    • /
    • 제18권1호
    • /
    • pp.13-21
    • /
    • 2013
  • Cavitating flow is usually formed on the surface of a high speed underwater object. When a object moves near a free surface at very high speed, the cavity signature becomes one of the major factors to be overcome by sensors of military satellite. The present work was to study the free surface effect on the ventilated cavitation. The governing equations were Navier-Stokes equations based on a homogeneous mixture model. The multiphase flow solver used an implicit preconditioning method in the curvilinear coordinate system. The cavitation model used here was the one first presented by Merkle et al.(2006) and redeveloped by Park & Ha(2009). Computations considered the free surface effects were carried out with a NACA0012 hydrofoil and the corresponding results were compared with the experimental data to have a good agreement. Calculations were then performed considering the ventilated cavitation, including the effect of non-condensable gas under the free surface effects.