• 제목/요약/키워드: Vent hole

검색결과 36건 처리시간 0.025초

자동차 워셔펌프의 통기구 유무에 따른 작동내구 특성 분석 (Analysis Study on Durability Properties of Washer Pump with Vent Hole)

  • 이상훈;위신환;김성우;김규로
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제13권1호
    • /
    • pp.45-53
    • /
    • 2013
  • In this paper, we analyze the failure mechanism of the washer pump to find what is the failure cause in the road environment. The statistics show the field common failure mode is inner corrosion. The failure mechanism is assumed that the inner part of washer pump is corroded due to inflow of moisture through vent hole. To prevent the failure, we can think a method that is covering the vent hole. In general, the vent hole is designed to play an important role in an automobile parts. So, we need to prove the vent hole is not necessary. The first purpose of this paper is to make sure that the vent hole does not affect the durability of washer pump using the analysis of operating condition. The second purpose is to compare the durability properties if the vent hole is covered.

개별 치아 트레이의 재료와 형태에 따른 인상체의 정밀성에 관한 연구 (A STUDY ON THE ACCURACY OF THE IMPRESSION BODY ACCORDING TO MATERIALS AND FORMS OF THE INDIVIDUAL TOOTH TRAY)

  • 류덕우;임주환;조인호
    • 대한치과보철학회지
    • /
    • 제38권2호
    • /
    • pp.242-254
    • /
    • 2000
  • Accurate impression is very important to achieve desirable prosthesis and there are many factors in taking a good impression. For example, types of impression material, types of impression tray, impression taking methods and so on. Recently individual tooth tray technique is accepted as obtaining good impression that can be applied to multiple abutment impression, heavy salivated patient, to minimize the effect of natural teeth s undercuts and to reduce pain during cord packing procedures. The purpose of this study was to compare the accuracy according to materials and forms of the individual tooth tray which is clinically applied nowadays. Used materials in experiment were divided into 3 types (acrylic resin. $Futar^{(R)}$ occlusion. $Blu-mousse^{(R)}$) and forms were divided into 2 types (forming occlusal vent hole or not and forming marginal vent space or not). Stone master model from impression body and metal master model were measured by $X-PLAN360d^{(R)}$ to compare occlusal surface discrepancy and marginal discrepancy. The results were as follows: 1. In comparison of occlusal surface discrepancy and marginal discrepancy according to materials, groups with three materials showed no statistical difference 2. In comparison of occlusal surface discrepancy and marginal discrepancy according to occlusal vent hole, groups with occlusal vent hole showed significantly less marginal discrepancy than groups with no occlusal vent hole(p<0.05). 3. In comparison of occlusal surface discrepancy and marginal discrepancy according to 0.5mm-marginal-vent-space, groups with no 0.5mm-marginal-vent-space showed significantly less marginal discrepancy than groups with 0.5mm-marginal-vent-space (p<0.05). In summary these results suggest that individual tooth tray made of 3 types of materials with occlusal vent hole and individual tooth tray made of acrylic resin with no marginal vent space showed good accuracy of impression. In addition, individual tooth tray which is made of bite registration materials may be more useful because of advantage in facility and timesaving aspect of fabrication.

  • PDF

상자포장 청과물의 송풍저항 특성 (Resistance to Air Flow through Packed Fruits and Vegetables in Vented Box)

  • 윤홍선;조영길;박경규
    • Journal of Biosystems Engineering
    • /
    • 제20권4호
    • /
    • pp.351-359
    • /
    • 1995
  • In pressure cooling system, produce were packed in vented box and cooled rapidly by producing a difference in air pressure on opposite faces of stacks of vented box. So, energy requirements and performance of pressure cooling system depended upon the air flow rate and the static pressure drop through packed produce in vented box. The static pressure drop across packed produce in vented box normally depended upon air flow rate, vent area of box and conditions of produce bed (depth, porosity, stacking patterns, size and shape of products) in box. The objectives of this study were to investigate the effect of vent area and air flow rate on airflow resistance of empty box and packed produce in vented box, and to investigate the relationship between the air flow resistance of packed products in vented box and sum of air flow resistance of empty box only and products in bulk only. Mandarins and tomatoes were used in the experiment. The airflow rate were in the range of 0.02~1.0$m^3$/s.$m^2$, the opening ratio of vent hole were in the range of 2.5~20% of the side area. The results were summerized as follows. 1. The pressure drops across vented box increased in proportion to superficial air velocity and decreased in proportion to opening ratio of vent hole. A regression equation to calculate airflow resistance of vented box was derived as a function of superficial air velocity and opening ratio of vent hole. 2. The pressure drops across packed produce in vented box increased in proportion to superficial air velocity and decreased in proportion to opening ratio of vent hole. 3. Because of the air velocity increase in the vicinity of vent hole in box, the airflow resistances of packed products in vented box were always higher than sum of air flow resistance of empty box only and products in bulk only. 4. Based on the airflow resistance of empty box and products in bulk, a regression equation to calculate airflow resistance of packed products in vented box was derived.

  • PDF

청과물상자의 통기공 및 상자적재방법이 정압강하에 미치는 영향 (The Effect of Air Vent Holes and Stacking Methods of Fruits and Vegetables Boxes on Static Pressure Drop in Pressure Cooling System)

  • 김의웅;김병삼;남궁배;정진웅;김동철;금동혁
    • Journal of Biosystems Engineering
    • /
    • 제20권4호
    • /
    • pp.360-367
    • /
    • 1995
  • The effect of air vent holes, stacking methods of boxes and clearance between boxes on static pressure drop, were measured to design of pressure cooling system. Static pressure drops in air vent hole of carton box were measured for different hole opening ratio from 1% to 5%. Static pressure drop was expressed as a function of superficial velocity as second-degree polynomial. At given static pressure in plenum chamber, static pressure drop in boxes was shown as second-degree polynomial of the number of carton box in series stacking method, as first-degree polynomial in height and parallel stacking method. In pressure cooling of 24 boxes of Tsugaru apple, air flow rates through clearance between the boxes were shown 1.27 and 1.65 times than those of through the inside of boxes at the plenum pressure of 10mmAq and 20mmAq, respectively.

  • PDF

Dynamic PIV 기법을 이용한 커튼에어백 Vent Hole 고속유동 해석 (Dynamic PIV analysis of High-Speed Flow from Vent Holes of Fill-Hose in Curtain type Airbag)

  • 장영길;최용석;이상준
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2006년도 추계학술대회 논문집
    • /
    • pp.17-20
    • /
    • 2006
  • Passenger safety is fundamental factor in automobile. Among much equipment for passenger safety, the air bag system is the most fundamental and effective device. Beside of the front air bag system which installed on most of all automobiles, a curtain-type air bag is increasingly adapted in deluxe cars fur protecting passengers from the danger of side clash. Curtain type airbag system consists of inflator housing, fill hose, curtain airbag. Inflator housing is a main part of the curtain-type air bag system for supplying high-pressure gases to deploy the air bag-curtain. Fill hose is a passageway to carry the gases from inflator housing to each part of curtain airbag. Therefore, it is very important to design the vent holes of fill hose for good performance of airbag deployment. But, the flow information from vent holes of fill hose is very limited. In this study, we measured instantaneous velocity fields of a high-speed flow ejecting from the vent holes of fill hose using a dynamic PIV system. From the velocity Held data measured at a high frame-rate, we evaluated the variation of the mass flow rate with time. From the instantaneous velocity fields of flow ejecting from the vent holes in the initial stage, we can see a flow pattern of wavy motion and fluctuation. The flow ejecting from the vent holes was found to have very high velocity fluctuations and the maximum velocity was about 480m/s at 4-vent hole region. From the mass flow rate with time, the accumulated flow of 4-vent hole has occupied about 70% of total flow rate.

  • PDF

열 배출구 형상 모델링 자동화 시스템 개발 (Development of Automated Modeling System for Air-Ventilation Holes)

  • 박현풍
    • 한국CDE학회논문집
    • /
    • 제14권5호
    • /
    • pp.330-337
    • /
    • 2009
  • Nowadays a lot of high-tech electronic products such as TVs, monitors and camcorders are being developed. The more functions the electronic devices have, the more heat problems occur. Therefore, most of electronic products have air-ventilation holes to eliminate heat that is generated inside the products. The shapes of ventilation holes are usually complicated since aesthetic appearance of the products is important these days. In order to create those complicated shapes, designers should do time-consuming jobs because most of commercial CAD systems do not provide the functions that create patterns of lofted parts along freeform surfaces. In this research, an automated air-ventilation hole modeling system was proposed. The system generates patterns of lofted objects on freeform surfaces. Standard process to create air-ventilation holes manually was established, and vent-hole types and pattern types were classified into several categories. Designers can create many kinds of vent-holes by combining vent-hole types and pattern types. Users can also utilize user-defined pattern which can give users more flexibility. Developed system was applied to several design examples and the results are presented.

전산모사에 의한 웨이브 히트싱크의 열유동 특성 해석 (Heat Flow Analysis in the Newly Developed Wave Heat Sink by Computational Simulation)

  • 이인규;이상웅;강계명;장시영
    • 한국재료학회지
    • /
    • 제14권12호
    • /
    • pp.870-875
    • /
    • 2004
  • Heat flow characteristics in the newly developed Wave Heat Sink were analyzed under natural and forced convections by Icepak program using the finite volume method. Temperature distribution and thermal resistance of Wave Heat Sink with/without air vent hole on the top of fin were compared with those of a commercial Al extruded heat sink(Intel Heat Sink). Under the natural convection, the maximum temperature was $45.1^{\circ}C$ in the air vent hole typed Wave Heat Sink, which was superior to that of Intel Heat Sink. The thermal resistance was $2.51^{\circ}C/W$ in the air vent hole typed Wave Heat Sink, and it changed to $2.65^{\circ}C/W\;and\;2.16^{\circ}C/W$ with changes of gravity direction and fin height, respectively. Under the forced convection, the maximum temperature became lower than that under the natural convection. In addition, the thermal resistance lowered in the air vent hole typed Wave Heat Sink with higher fin height and it decreased with increasing the air flux.

벤트 홀을 통한 격실 내부 압력 하강 시험 결과 분석

  • 옥호남;라승호;최상호;김인선
    • 항공우주기술
    • /
    • 제4권1호
    • /
    • pp.150-161
    • /
    • 2005
  • 발사체의 노즈 페어링 벤트 홀 크기 결정 기법의 정확도를 검증하기 위한 시험을 수행하였다. 한국항공우주연구원 우주비행시험그룹이 보유한 열진공 챔버(Bake-Out Chamber)를 이용하여 챔버 내부 압력을 대기압에서 진공으로 떨어뜨렸으며, 그 속에 다양한 벤트홀이 설치된 모델을 넣고 모델 내외부의 압력 및 온도 변화를 측정하였다. 시험 과정에서 나타난 시험 설비 및 측정 장비의 특성을 검토하고 이들이 얻어진 시험 데이터의 정확도 및 신뢰도에 미치는 영향을 분석하였다. 설비 및 측정 장비의 한계 내에서 최대한의 정확도를 얻을 수 있도록 데이터를 처리하였으며, 이렇게 얻어진 시험 결과로부터 벤트 홀 면적 및 배치에 따르는 영향을 분석하였다.

  • PDF

박과작물 재배 단동 비닐하우스의 천장 환기시스템 설치 실태조사 (A field survey on roof ventilation system of single-span plastic greenhouse in cucurbitaceae vegetable cultivation)

  • 여경환;유인호;이한철;정재완;최경이
    • 농업과학연구
    • /
    • 제40권4호
    • /
    • pp.317-323
    • /
    • 2013
  • This research was conducted to obtain the basic information for establishment of standard guidelines in the design and installation of roof ventilation system in single-span plastic greenhouse. To achieve this, the greenhouse structure & characteristics, cultivation status, and ventilation system were investigated for single-span greenhouse with roof ventilation system cultivating the Cucurbitaceae vegetables, watermelon, cucumber, and oriental melon. Most of single-span watermelon greenhouse in Haman and Buyeo area were a hoop-style and the ventilation system in those greenhouses mostly consisted of two different types of 'roof vent (circular or chimney type) + side vent (hole) + fan' and 'roof vent (circular type) + side vent (hole or roll-up type)'. The diameter of circular and chimney-type vent was mostly 60cm and the average number of vents was 10.5 per a bay with vent spacing of average 6.75m. The ratio of roof vent area to floor area and side vent area in the single-span watermelon greenhouse with ventilation fan were 0.46% and 7.6%, respectively. The single-span cucumber greenhouse in Haman and Changnyeong area were a gable roof type, such as even span, half span, three quarter and the 70.6% of total investigated single-span greenhouses was equipped with a roof ventilation fan while 58.8% had a circulation fan inside the greenhouse. The ratios of roof vent area to floor area in the single-span cucumber greenhouse ranged from 0.61 to 0.96% and in the case of the square roof vent, were higher than that of the circular type vent. On average, the roof ventilation fan in single-span cucumber greenhouse was equipped with the power input of 210W and maximum air volume of $85.0m^3/min$, and the number of fans was 9.75 per a bay. The number of roof vent of single-span oriental melon greenhouse with only roll-up type side vent ranged from 8 to 21 (average 14.8), which was higher than that of other Cucurbitaceae vegetables while the vent number of the greenhouse with a roof ventilation fan was average 7 per a bay.

역설계를 이용한 상용 벤틸레이티드 디스크의 성능향상을 위한 설계 (Design of ventilated disc for Improvement using reverse engineering)

  • 박인백;이수도;권태완;이석희
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.383-384
    • /
    • 2006
  • Ventilated disc was improved for reducing judder and heat. But the crack among vent holes occurs due to stress concentration. We investigate the stress distribution of vent holes. The vent holes with shape of a right angle, a chamfer and rounding was analyzed. The result of FEA was that rounded vent holes have a minimum stress. Also Maximum stress distributed within holes. Therefore We suggest that the rounded vent holes is good to reduce the crack.

  • PDF