• Title/Summary/Keyword: Vent Analysis

Search Result 158, Processing Time 0.024 seconds

A NUMERICAL STUDY ON AERODYNAMIC CHARACTERISTICS OF A ROTATING PARACHUTE IN STEADY DESCENDING MOTION (등속도로 하강중인 회전 낙하산의 공력특성에 관한 수치적 연구)

  • Je S.E.;Jung S.G.;Kwag S.H.;Myong R.S.;Cha T.H.
    • Journal of computational fluids engineering
    • /
    • v.11 no.1 s.32
    • /
    • pp.52-56
    • /
    • 2006
  • In this paper a method for analysing aerodynamic characteristics of a rotating parachute in steady descending motion is presented Because of a complex geometric configuration of the parachute associated with side vents and discontinuous skirts, special procedure was adopted to handle the geometry in the analysis. A panel method was successfully applied to the present problem and yielded good results using above procedure. A CFD code using the full Navier-Stokes equations was also applied and produced good results. Parachute free drop and wind tunnel tests were performed to determine the fully developed canopy configuration and aerodynamic characteristics. The method can be used for optimizing the parachute size and side vent configurations.

On-line Analysis of Phellinus linteus WI-001 Fermentation Parameters. (Phellinus linteus WI-001 발효에 배양공정 parameter의 온라인 분석)

  • 김종래;권호균;전계택;이계관
    • Microbiology and Biotechnology Letters
    • /
    • v.28 no.5
    • /
    • pp.298-302
    • /
    • 2000
  • Fermentation parameters were estimated by use of a vent gas analyzer coupled to a computer data acquisition system in cultivation of Phellinus linteus WI-001, pro-ducer of polysaccharides known to have potent anticancer activities. Oxygen uptake rate(OUR), a critical indicator of the cells activities, was calculated by applying oxygen mass balance. In addition, by dividing the oxygen uptake rate hy the total oxygen consumed, on-line estimation of the cells specific growth rate was successfully done. It was also possible to estimate cell concentration directly bt use of oxygen-cell yield($Y_{x/o}$ ) which was obtained based on a correlation between cell growth and total oxygen consumed.

  • PDF

Quantitative Analysis for Plasma Etch Modeling Using Optical Emission Spectroscopy: Prediction of Plasma Etch Responses

  • Jeong, Young-Seon;Hwang, Sangheum;Ko, Young-Don
    • Industrial Engineering and Management Systems
    • /
    • v.14 no.4
    • /
    • pp.392-400
    • /
    • 2015
  • Monitoring of plasma etch processes for fault detection is one of the hallmark procedures in semiconductor manufacturing. Optical emission spectroscopy (OES) has been considered as a gold standard for modeling plasma etching processes for on-line diagnosis and monitoring. However, statistical quantitative methods for processing the OES data are still lacking. There is an urgent need for a statistical quantitative method to deal with high-dimensional OES data for improving the quality of etched wafers. Therefore, we propose a robust relevance vector machine (RRVM) for regression with statistical quantitative features for modeling etch rate and uniformity in plasma etch processes by using OES data. For effectively dealing with the OES data complexity, we identify seven statistical features for extraction from raw OES data by reducing the data dimensionality. The experimental results demonstrate that the proposed approach is more suitable for high-accuracy monitoring of plasma etch responses obtained from OES.

Lubrication Analysis of Hydraulic Spool Valve with Groove Cross Sectional Shapes (Groove 단면형상에 따른 유압 Spool Valve의 윤활해석)

  • Park, Tae-Jo;Hwang, Yun-Geon
    • Tribology and Lubricants
    • /
    • v.25 no.1
    • /
    • pp.13-19
    • /
    • 2009
  • The spools in most hydraulic spool type control valve have several circumferential grooves to pre-vent well known hydraulic locking problems which result in high friction force and excessive wear. In this paper, a commercial computational fluid dynamics (CFD) code, FLUENT is used to investigate the flow and lubrication characteristics of grooved hydraulic spool valve. The stream lines and pressure distributions are obtained for various groove cross sectional shapes and film thicknesses. The stream lines are highly affected by groove cross sectional shape but pressure distributions mainly depend on the film shape and its magnitude. Therefore the numerical method adopted in this paper and results can be use in designing of various grooved spool valve.

A Study on the Thermal Hydraulic Analysis and B-Scan Inspection for LDIE Degradation of Carbon Steel Piping in a Nuclear Plant (원전 탄소강 배관의 액적충돌침식 손상에 대한 B-Scan 검사 및 수치해석적 분석)

  • Hwang, Kyeong Mo;Lee, Dae Young
    • Corrosion Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.218-224
    • /
    • 2012
  • Liquid droplet impingement erosion (LDIE) known to be generated in aircraft and turbine blades is recently appeared in nuclear piping. UT thickness measurements with both A-scan and B-scan UT inspection equipments were performed for a component estimated as susceptible to LDIE in feedwater heater vent system. The thickness data measured with B-Scan equipment were compared with those of A-Scan. Thermal hydraulic analysis based on ANSYS FLUENT code was performed to analyze the behavior of liquid droplets inside piping. The wall thinning rate and residual lifetime based on both existing Sanchez-Caldera equation and measuring data were also calculated to identify the applicability of the existing equation to the LDIE management of nuclear piping. Because Sanchez-Caldera equation do not consider the feature of magnetite formed inside piping, droplet size, colliding frequency, the development of new evaluation method urgently needs to manage the pipe wall thinning caused by LDIE.

A Numerical Study on the Characteristics of Flow Field, Temperature and Concentration Distribution According to Changing the Shape of Separation Plate of Kitchen Hood System (주방용 후드시스템의 분리판 형상 변화에 따른 유동장, 온도 및 농도특성에 관한 수치적 연구)

  • Lee, Kwang-Sub;Lee, Chang-Hee;Lim, Kyoung-Bin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.2 s.245
    • /
    • pp.177-185
    • /
    • 2006
  • This study aims deriving analysis the flow characteristic of kitchen hood system with using 3-D numerical analysis method and improving the system to expel pollutes more efficiently. To understand the flow characteristics of four models, this study only focuses on velocity field, temperature field, and concentration field varying with followings whether separation plate is set or not and the shapes of separation plates. The quantity of air, speed of exhaust fan and temperature and concentration of heating source are concerned as constant values. The three models having different shapes have one exhaust port and the model which has the vent at the closest position to where pollutes are generated is discovered to be the most efficient model. Compare to the initial model (having no separation plate), it was $1.4-1.9\%$ more efficient at temperature distribution and $9.4-11.9\%$ more at $CO_2$ concentration distribution.

A Study on the Forming Analysis of the 2 Cavity Die Casting for Automobile Valve Housing (자동차용 밸브 하우징의 2 캐비티 다이캐스팅 성형해석에 관한 연구)

  • Lee, Jong-Hyung;Yi, Chang-Heon;Lee, Sang-Young;Ha, Hong-Bae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.2
    • /
    • pp.27-35
    • /
    • 2006
  • Al used in automobiles is mostly material, and according to the innovation of technique is in rapid development. Al die casting is an important field as today's trend of lightweight on automobiles. Valve housing in steering system improves driver's controling. The valve housing which is widely reliable to the most automobiles are developed this moment in our automobile industry. Therefore, they are produced by casting method which cost three times or even more expensive in production. If valve housing which is a part of steering system is produced by gravity casting, the space for manufacturing equipment will be increased, and more time and workers would be brought into service. For such reason, die casting would replace gravity casting in order to minimize cost of time, manpower, and working space. This study is the forming analysis of the 2 cavity die casting for automobile valve housing.

  • PDF

Evaluation of Computational Fluid Dynamics for Analysis of Aerodynamics in Naturally Ventilated Multi-span Greenhouse

  • Lee, In Bok;Short, Ted H.;Sase, Sadanori;Lee, Seung Kee
    • Agricultural and Biosystems Engineering
    • /
    • v.1 no.2
    • /
    • pp.73-80
    • /
    • 2000
  • Aerodynamics in a naturally ventilated multi-span greenhouse with plants was analyzed numerically by the computational fluid dynamics (CFD) simulation. To investigate the potential application of CFD techniques to greenhouse design and analysis, the numerical results of the CFD model were compared with the results of a steady-state mass and energy balance numerical model. Assuming the results of the mass and energy balance model as the standard, reasonably good agreement was obtained between the natural ventilation rates computed by the CFD numerical model and the mass and energy balance model. The steady-state CFD model during a sunny day showed negative errors as high as 15% in the morning and comparable positive errors in the afternoon. Such errors assumed to be due to heat storage in the floor, benches, and greenhouse structure. For a west wind of 2.5 m s$^{-1}$ , the internal nonporous shading screens that opened to the east were predicted to have a 15.6% better air exchange rate than opened to the west. It was generally predicted that the presence of nonporous internal shading screens significantly reduced natural ventilation if the horizontal opening of the screen for each span was smaller that the effective roof vent opening.

  • PDF

Structural analysis of Kick Motor support cone structure (KSLV-1 킥모터지지부 콘 구조물 구조 해석)

  • An, Jae-Mo;Kim, Gwang-Su;Jang, Yeong-Sun;Lee, Yeong-Mu
    • Aerospace Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.159-165
    • /
    • 2006
  • In this study, structural analysis is executed about cone structure of KSL V-1 2nd stage KMS(kick motor support structure) which is designed for support the load developed from 2nd stage kick motor. KMS is consisted of cone structure and truss structure which is designed for supporting load developed from 2nd stage payload. Applied loads to cone structure are tension load by inertia developed from kick motor and compression load developed from kick motor. Also, shear and bending load are developed according to flight condition. In this study, structural analysis of cone structure is executed under several load condition which may be applied to cone structure. Also, structural analysis with two finite element model is performed according to pressure vent scheme. In result of structural analysis, critical load condition is equivalent tension load with cut-out.

  • PDF

Study of Tolerance Suitability of Door Operation Mechanism on Mobile Air Handing Unit Using 3-DCS Analysis (3-DCS를 이용한 자동차 공기 분배장치의 도아 구동 기구의 공차 적합성 분석에 대한 연구)

  • Kim, Jongsu;Lee, Daewoong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.5
    • /
    • pp.527-537
    • /
    • 2016
  • Recent automakers are trying to be more precise with the dimension check and moving parts to guarantee high quality and satisfy customer requirements. The aim of this paper is to investigate the design tolerance suitability of door operating mechanism linked arms, lever, and cam-shaft in a mobile air handling unit. These parts are complicated because doors, arms, lever and cam-shaft are connected nonlinearly in 3D. The current tolerance analysis method poses problems in design analysis because the moving doors are reasonably suitable for the AHU function. The 3-DCS analysis method provided useful results not only in establishing the inspection criteria for the quality control of products but also in enabling economical production. As a result, the vent door had $1.62^{\circ}{\sim}1.72^{\circ}$ and the defrost door had $0.84^{\circ}{\sim}0.9^{\circ}$ for the directly connected arms operating-type. For the lever connected arm operating-type, the foot door had $2.0^{\circ}{\sim}2.24^{\circ}$ tolerance, while the tolerance values satisfied the air flow volume distribution rate criteria in the AHU. Finally, the results have confirmed the design's tolerance suitability by using 3-DCS analysis at the early design stages. Reliability can be achieved by analyzing accumulated tolerance during the sub-parts assembly process and the moving mechanism linked especially by arms, lever, and cam-shaft.