• 제목/요약/키워드: Velocity profiles

Search Result 898, Processing Time 0.024 seconds

Flowrate Integration Errors of Multi-path Ultrasonic Flowmeter using Weighting Factors (가중계수에 의한 다회선 초음파 유량계의 유량적분오차)

  • Lee, Ho-June;Hwang, Shang-Yoon;Kim, Kyoung-Jin
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.154-160
    • /
    • 2003
  • Multi-path ultrasonic flowrate measuring technology is being received much attentions from a variety of industrial fields to exactly measure the flowmeter. Multi-path ultrasonic flowmeter has much advantage since it has no moving parts and not occurred pressure loss. It offers good accuracy, repeatability, linearity and Tum-down ratio can measure over 1:50. The present study investigates flowrate integration errors using weighting factors. A theoretical flow model uses power law to describe a fully developed velocity profiles and wall roughness changes. The methods of weighting factor simulate three configurations of measuring location of gaussian, chebyshev and tailor method. The obtained results show that many chord arrangements are not affected for wall roughness changes and can measure accurate flowrate.

  • PDF

Effect of Incidence Angle on the Turbulence Structure in the Wake of a Turbine Rotor Blade (입사각이 터빈 동익 후류의 난류구조에 미치는 영향)

  • Chang, Sung-Il;Lee, Sang-Woo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.55-62
    • /
    • 2003
  • This paper describes the effect of the incidence angle on the turbulence structure in the wake of a turbine rotor blade at the low inlet free-stream turbulence level. For three incidence angles of -5, 0 and 5 degrees, mid-span energy spectrum as well as mid-span profiles of mean velocity magnitude and turbulence intensity are reported at three downstream locations in the wake. Vortex shedding frequencies are obtained from the energy spectrum. The result shows that as the incidence angle changes from-5 to 5 degrees, the boundary layer on the suction surface tends to be thickened, which results in widening of the wake. Strouhal numbers based on the shedding frequencies have a nearly constant value of 0.3, independent of tested incidence angles.

  • PDF

An Experimental Study on Drag Reduction of Grooved Cylinders (Riblet 홈을 가진 원주의 저항감소에 관한 실험적 연구)

  • Im, Hui-Chang;Lee, Sang-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.2
    • /
    • pp.260-268
    • /
    • 2001
  • Wake structures behind two circular cylinders with different groove configurations(U and V-shape) have been investigated experimentally. The results were compared with those for the smooth cylinder having the same diameter D. The drag force, mean velocity and turbulent intensity profiles of wake behind the cylinders were measured with varying the Reynolds number in the range of Re(sub)D=8,000∼14,000. As a result, the U-shaped groove was found to reduce the drag up to 18.6%, but the V-shaped groove reduced drag force only 2.5% compared with the smooth cylinder. As the Reynolds number increases, the vortex shedding frequency becomes a little larger than that of the smooth cylinder. The visualized flow using the smoke-wire and particle tracing methods shows the flow structure qualitatively.

Calibrating high-z QSO masses using near-IR and optical spectra

  • Kim, Phuong Thi;Woo, Jong-Hak
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.48.2-48.2
    • /
    • 2011
  • Using the newly commissioned Fiber-Multi-Object-Spectrograph at the Subaru telescope, we obtained near-IR spectra of a sample of 19 AGNs at 0.6 < z < 2.6, selected from the NOAO Deep Wide-Field Survey (NDWFS) Bootes field, in order to calibrate high-z black hole mass (MBH) estimators. MBHs are generally determined through the kinematics of ionized gas clouds around the black hole assuming virial equilibrium. The velocity profiles of $H{\beta}/H{\alpha}$, MgII and CIV are used to infer the gas kinematics of low-z, mid-z, and high-z quasars, respectively. However, the MBH based on MgII and CIV is not very well calibrated. We compare the $H{\alpha}$ - based MBH estimates from the new FMOS near-IR spectra, with the MgII-based MBH estimates from our existing optical spectra, and investigate the systematic differences.

  • PDF

A Study on the Cam Profile Synthesis Method for Automotive Engines Using Hermite Curve (Hermite 곡선을 이용한 자동차 엔진 캠 형상 합성법에 관한 연구)

  • Kim, D.J.;Lee, J.W.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.5
    • /
    • pp.90-99
    • /
    • 1995
  • A numerical method is proposed to synthesize automotive cam profiles. An arbitrary acceleration profile for the cam follower motion is divided into several segments, each of them is described by a Hermite curve. A cam profile is defined by control point locations and control variables assigned to each segment. Closed form equations are derived for velocity and displacement constraints which should be satisfied for the curve to be a cam profile. Because the method is flexible and provide arbitrary local controllability, any types of cam acceleration profile can be reproduced by the method. The method is expecially useful for the design of roller type OHC valve trains which need precise local control in the cam profile design to avoid under-cutting problems.

  • PDF

Turbulent Flow Characteristics using Plane Jet on Impingement Surface (평면제트를 이용한 충돌면에서의 난류유동 특성)

  • 윤순현
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.429-435
    • /
    • 1998
  • Experiments were conducted to investigate the turbulent flow characteristics from on oblique impingement surface to an plane jet at the jet Reynolds number(Re based on the nozzle width) $3{\times}10^4$ The jet mean velocity and turbulent intensity profiles have been measured along the impingement surface by hot-wire anemometer. The nozzle-to-plate distance(H/B) ranged from 2 to 10 and the oblique angle (a) from 45 to 90 degree. Also the secondary peak of the turbulent intensity was observed at H/B=4 S/B 5 and a=90 degree. It has been found that the stagnation point shifted toward the minor flow region as the oblique angle decreased and the position of the stagnation point nearly coincided with that of the maximum turbulent intensity.

  • PDF

A NUMERICAL STUDY ON MHD NATURAL CONVECTIVE HEAT TRANSFER IN AN AG-WATER NANOFLUID FILLED ENCLOSURE WITH CENTER HEATER

  • NITHYADEVI, N.;MAHALAKSHMI, T.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.21 no.4
    • /
    • pp.225-244
    • /
    • 2017
  • The natural convective nanofluid flow and heat transfer inside a square enclosure with a center heater in the presence of magnetic field has been studied numerically. The vertical walls of the enclosure are cold and the top wall is adiabatic while the bottom wall is considered with constant heat source. The governing differential equations are solved by using a finite volume method based on SIMPLE algorithm. The parametric study is performed to analyze the effect of different lengths of center heater, Hartmann numbers and Rayleigh numbers. The heater effectiveness and temperature distribution are examined. The effect of all pertinent parameters on streamlines, isotherms, velocity profiles and average Nusselt numbers are presented. It is found that heat transfer increases with the increase of heater length, whereas it decreases with the increase of magnetic field effect. Furthermore, it is found that the value of Nusselt number depends strongly upon the Hartmann number for the increasing values of Rayleigh number.

Surface Texturing in Hydraulic Machine Components for Friction Reduction (Surface Texturing에 의한 유압부품의 마찰저감)

  • Park, Tae Jo;Kim, Min Gyu
    • Journal of Drive and Control
    • /
    • v.13 no.1
    • /
    • pp.27-33
    • /
    • 2016
  • In hydraulic machinery, the hydraulic fluid acts primarily as working fluid and secondarily as a lubricant. Hence, the viscous friction force acting on the sliding components should be reduced to improve the mechanical efficiency. It is now well known that the surface texturing is a useful method for friction reduction. In this study, using a commercial computational fluid dynamics (CFD) code, FLUENT, the lubrication characteristics of a surface textured slider bearing under high boundary pressure difference is studied. The streamlines, velocity profiles, pressure distributions, load capacity, friction force and leakage flowrate are highly affected by the film thickness ratio and the textured region. Partial texturing at the inlet region of the inclined slider bearing can reduce both friction force and leakage flowrate than in the untextured case. The present results can be used to improve the lubrication characteristics of hydraulic machinery.

직사각형 밀폐공간내 자연대류 열전달의 수치해석

  • Min, Man-Gi
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.10 no.3
    • /
    • pp.185-219
    • /
    • 1981
  • To analyze two dimensional incompressible laminar natural convection in a rectangular enclosure heated from below and cooled by a horizontal ceiling and two vertical walls, he primitive Navier-Stokes equations and the energy equation were solved numerically in time dependent form by a marker and cell method. A successive over-relaxation method for the elliptic portion of the problem and an explicit method for the parabolic portion were applied for the range of Grashoff number of $5{\times}10^3\;to\;5{\times}10^4$ to get the transient and steady state dimensionless temperature and velocity profiles. For the range of aspect ratio $L/H{\leqq}2.4$ in which only a pair of convection rolls exists mean Nusselt number calculated are as follows : $$N_{NU}0.89\;N_{Gr}^{0.2}(H/L)^{0.45}$$ By path lines drawn by marker particle trajectories roll number of cellular motion were observed for various aspect ratio of the enclosure.

  • PDF

Viscous damping effects on the seismic elastic response of tunnels in three sites

  • Sun, Qiangqiang;Bo, Jingshan;Dias, Daniel
    • Geomechanics and Engineering
    • /
    • v.18 no.6
    • /
    • pp.639-650
    • /
    • 2019
  • Time-domain commercial codes are widely used to evaluate the seismic behavior of tunnels. Those tools offer a good insight into the performance and the failure mechanism of tunnels under earthquake loading. Viscous damping is generally employed in the dynamic analysis to consider damping at very small strains in some cases, and the Rayleigh damping is commonly used one. Many procedures to obtain the damping parameters have been proposed but they are seldom discussed. This paper illustrates the influence of the Rayleigh damping formulation on the tunnel visco-elastic behavior under earthquake. Four Rayleigh damping determination procedures and three soil shear velocity profiles are accounted for. The results show significant differences in the free-field and in the tunnel response caused by different procedures. The difference is somewhat decreased when the soil site fundamental frequency is increased. The conventional method which consists of using solely the first soil natural mode to determine the viscous damping parameters may lead to an unsafe seismic design of the tunnel. In general, using five times site fundamental frequency to obtain the damping formulation can provide relatively conservative results.