• Title/Summary/Keyword: Velocity profiles

Search Result 898, Processing Time 0.026 seconds

Effects of critical viscosity temperature and flux feeding ratio on the slag flow behavior on the wall of a coal gasifier (석탄 가스화시 회분의 임계점도온도 및 플럭스 비율 변화에 따른 벽면 슬래그 거동 특성 분석)

  • Ye, Insoo;Ryu, Changkook;Kim, Bongkeun
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.21-24
    • /
    • 2014
  • In the entrained-flow coal gasifier, coal ash turns into a molten slag most of which deposits onto the wall to form liquid and solid layers. Critical viscosity refers to the viscosity at the interface of the two layers. The slag layers play an important role in protecting the wall from physical/chemical attack from the hot syngas and in continuously discharging the ash to the slag tap at the bottom of the gasifier. For coal with high ash melting point and slag viscosity, CaO-based flux is added to coal to lower the viscosity. This study evaulates the effect of critical viscosity temperature and ash/flux ratio on the slag behavior using numerical modelling in a commercial gasifier. The changes in the slag layer thickness, heat transfer rate, surface temperature and velocity profiles were analyzed to understand the underlying mechanism of slag flow and heat transfer.

  • PDF

Coupled Analysis of Continuous Casting by FEM (유한요소법을 이용한 연속주조공정의 연계해석)

  • Moon C. H.;Hwang S. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.181-185
    • /
    • 2001
  • Three-dimensional finite-element-based numerical model of turbulent flow, heat transfer, macroscopic solidification and inclusion trajectory in a continuos steel slab caster was developed Turbulence was incorporated using the Improved Low-Re turbulence model with positive preserving approach. The mushy region was modeled as the porous media with average effective viscosity. A series of simulations was carried out to investigate the effects of the casting speed, the slab size, the delivered superheat the immersion depth of the SEN on the transport phenomena. In the absence of any known experimental data related to velocity profiles, the numerical predictions of the solidified profile on a caster was compared with breakouts data and a good agreement was found.

  • PDF

A Study on Analysis of Intake Flow in a 5-valves Gasoline Engine by using a Two Color PIV System (이색 PIV를 이용한 5밸브 가솔린 엔진의 흡입 유동 해석)

  • Woo, Young-Wan;Park, Sang-Chan;Lee, Ki-Hyung;Lee, Chang-Sik
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.933-938
    • /
    • 2001
  • A 5-valve(intake 3-valve) engine has been developed to increase engine performance. These vehicles have a high power caused by the decrease of inertia mass of an intake valve and the increase of intake effective area. In this study, velocity profiles at near intake valves were inspected by using a two-color PIV and laser sheet method with tumble control valve(TCV). In addition, steady flow tests were performed to quantify tumble ratio on flow-fields generated with a TCV. These experimental results show that the tendency of the tunble ratio in intake 3-valve engine is different from the one in intake 2-valve engine. From this results, the intake flow characteristics around intake valves were made clear.

  • PDF

Turbulent flow in annuli depending on the position of roughness (거칠기 위치에 따른 이중관 내의 난류유동)

  • An, Su-Hwan;Kim, Gyeong-Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.7
    • /
    • pp.891-899
    • /
    • 1997
  • This paper presents the results of a detailed experimental examination of fully developed asymmetric flows between annular tubes with square-ribbed surface roughness. The main emphasis of the research has been on establishing the turbulence structure, particularly in the central region of the channel where the two dissimilar wall flows interact. Measurements have included profiles of time mean velocities, turbulence intensities, turbulent shear stresses, triple velocity correlations, skewness, and flatness. The region of greatest interaction is characterized by strong diffusional transport of turbulent shear stress and kinetic energy from rough toward the smooth wall region, giving rise to an appreciable separation between the planes of zero shear stresses depending on positions of roughness on the walls.

The Application of CFD for Ship Design (선박설계를 위한 계산유체역학의 활용)

  • Kim Wu-Joan;Van Suak-Ho
    • Journal of computational fluids engineering
    • /
    • v.8 no.2
    • /
    • pp.42-48
    • /
    • 2003
  • The issues associated with the application of CFD for ship design are addressed. Doubtlessly at the moment, CFD tools are very useful in evaluating hull forms prior to traditional towing tank tests. However, time-consuming pre-processing is an obstacle in the daily application of CFD tools to improve hull forms. The accuracy of computational modeling without sacrificing the usability of CFD system is also to be assessed. The wave generation is still predicted by using potential panel methods, while velocity profiles entering into propeller plane is solved using turbulent flow solvers. The choice of turbulence model is a key to predict nominal wake distribution within acceptable accuracy. The experimental data for CFD validation are invaluable to improve physical and numerical modeling. Other applications of CFD for ship design than hull form improvement are also given. It is certain that CFD can be a cost-effective tool for the design of new and better ships.

A Study on the Velocity Profiles and Pressure Distributions in Ejector Linking Inhale Duct (흡입관이 부착된 이젝터의 속도분포와 압력분포 연구)

  • Lee Heang-Nam;Park Gil-Moon;Lee Duck-Gu;Sul Jae-Lim
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.5
    • /
    • pp.488-494
    • /
    • 2005
  • The ejector is used to obtain a vacuum state, and it has been applied to a lot of industry field such as a heat engine, a fluid instrument power plant. a food industry, an environment industry etc., because there is no problem even it is mixed with any kind of liquid, gas. and solid. The flow characteristics in the ejector was investigated by a PIV and a CFD. The agreement between numerical analysis and experiment shows the validity of this study and the results of this study would be useful to the engineers who design for the flow systems for heating. ventilation. air conditioning and wastewater purification plants.

Proteomic Approach Analysis of Mammary Membrane Proteins Expression Profiles in Holstein Cows

  • Yang, Yong-xin;Cao, Sui-zhong;Zhang, Yong;Zhao, Xing-xu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.6
    • /
    • pp.885-892
    • /
    • 2009
  • To investigate host defense mechanisms for protecting the mammary gland from mastitis infection, the membrane fraction of mammary tissues from Holstein cows was purified by differential velocity centrifugation, and then the sodium dodecyl sulfate-polyacrylamid gel electrophoresis (SDS-PAGE) separated proteins were identified by ion trap mass spectrometer equipped with a Surveyor high performance liquid chromatography (HPLC) system. A total of 183 proteins were identified. Bioinformatics software was applied to analyse physicochemical characteristics of the identified proteins and to predict biochemical function. These data may provide valuable information to investigate the mechanisms of mammary gland milk secretion and infectious disease, and enable a clear identification of proteins and potential protein targets for therapies.

Kinetics and Mechanism of Mutant O-acetylserine Sulfhydrylase-A (C43S) from Salmonella typhimurium LT-2

  • Yoon, Moon-Young
    • BMB Reports
    • /
    • v.29 no.3
    • /
    • pp.210-214
    • /
    • 1996
  • The pH dependence of the kinetic parameters of mutant O-acetylserine sulfhydrylase (OASS) from Salmonella typhimurium LT-2 has been determined in order to obtain information on the chemical mechanism. The initial velocity pattern obtained by varying the concentrations of OAS at several fixed concentrations of TNB, shows an intersection on the left of the ordinate at pH 7.0, indicating that the kinetic mechanism is a sequential mechanism in which substrate inhibition by OAS is observed while the wild type enzyme showed a ping pong mechanism. The values of $V/E_t$, $V/K_{OAS}E_{t}$ and $V/K_{TNB}E_{t}$ decreased by about 68%, 14% and 16% as compared with the wild type enzyme. The $V/K_{OAS}E_{t}$ is a pK of 6.5 on the acid side of the pH profile, and the $V/K_{TNB}$ is pH independent. As compared with the wild type enzyme, the pKs in the V/K profiles are shifted, reflecting that binding of the cofactor in free E:OAS is less asymmetric.

  • PDF

INFLUENCE OF EDDY VISCOSITY COEFFICIENT ON ${\kappa}-{\varepsilon}$ TURBULENCE MODEL FOR SUPERSONIC BASE FLOW (초음속 기저부 유동에서 ${\kappa}-{\varepsilon}$ 난류 모델에 대한 와점성 계수의 영향)

  • Park, Soo-Hyung;Sa, Jeong-Hwan;Kim, Jee-Woong;Kwon, Jang-Hyuk;Kim, Chang-Joo
    • Journal of computational fluids engineering
    • /
    • v.13 no.3
    • /
    • pp.1-7
    • /
    • 2008
  • A supersonic base flow is computed to investigate the effect of the eddy viscosity coefficient to the linear ${\kappa}-{\varepsilon}$ turbulence models. Slight modifications to the eddy viscosity coefficient, which are based on the realizability condition, are given to the Launder-Sharma turbulence model so that present models satisfy the realizability condition. Numerical results for supersonic base flow show that turbulence models with the weaky-nonlinear eddy viscosity coefficient can lead to reasonable enhancements in the prediction of the velocity and turbulent kinetic energy profiles.

Heat Transfer Characteristics of Inclined Jet Impinging on a Pin Fin Heat Sink (경사진 충돌제트를 이용한 핀 휜 히트싱크의 열특성 연구)

  • Hong, Ki-Ho;Song, Tae-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.8 s.227
    • /
    • pp.961-967
    • /
    • 2004
  • An inclined jet impinging on a pin fin heat sink is proposed and investigated experimentally. To investigate the flow pattern, flow visualization using fluorescence and velocity measurement using particle image velocimetry(PIV) are conducted with water. The jet impinges over a wide span of the heat sink with a large recirculation in the upper free space and occasionally with another smaller one in the upstream corner. Further, thermal experimentation is conducted using air to obtain temperature profiles using a thermocouple rake in the air and using thermal image on the heat sink back plate, with impinging angles of 35, 45 and 55 degrees. The Reynolds number range based on the nozzle slot is varied from 1507 to 6405. The results show that impinging angle of 55 degree shows the largest heat transfer capability. The results of thermal experiment are compared and discussed with those of flow visualization.