• Title/Summary/Keyword: Velocity profiles

Search Result 900, Processing Time 0.025 seconds

Experimental Study of Flow Resistance and Flow Characteristics over Flexible Vegetated Open Channel (개수로 내 식생구간의 흐름저항 및 흐름특성에 관한 실험적 고찰)

  • Yeo, Hong Koo;Park, Moonhyeong;Kang, Joon Gu;Kim, Taewook
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.6
    • /
    • pp.61-74
    • /
    • 2004
  • Hydraulic engineers and scientists working on river restoration recognize the need for a deeper understanding of natural streams as a complex and dynamic system, which involves not only abiotic elements(flow, sediments) but also biotic components. From this point of view, the role played by riverine vegetation dynamics and flow conditions becomes essential. Hydro-mechanic interaction between flow and flexible plants covering a river bed is studied in this paper and some previous works are discussed. Measurements of turbulence and flow resistance in vegetated open channel were performed using rigid and flexible tube. Measuring detailed turbulent velocity profiles within and above submerged and flexible stems allowed to distinguish different turbulent regimes. Some interesting relationships were obtained between the velocity field and the deflected height of the plants, such as a reduced drag coefficient in the flexible stems. Turbulent intensities and Reynolds stresses were measured showing two different regions : above and inside the vegetation domain. In flexible vegetated open channel, the maximum values of turbulent intensities and Reynolds stresses appear above the top of canopy. Method to predict a flow resistance in flexible vegetated open channel is developed by modifying an analytical model proposed by Klopstra et al. (1997). Calculated velocity profiles and roughness values correspond well with flume experiments. These confirm the applicability of the presented model for open channel with flexible vegetation. The new method will be verified in the real vegetated conditions in the near future. After these verifications, the new method should be applied for nature rehabilitation projects such as river restorations.

Numerical simulation of dense interflow using the k-ε turbulence model (k-ε 난류모형을 이용한 중층 밀도류의 수치모의)

  • Choi, Seongwook;Choi, Sung-Uk
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.9
    • /
    • pp.637-646
    • /
    • 2017
  • This study presents a numerical model for simulating dense interflows. The governing equations are provided and the finite difference method is used with the $k-{\varepsilon}$ turbulence model. The model is used to simulate a dense interflow established in a deep ambient water, resulting velocity and excess density profiles. It is observed that velocity decreases in the longitudinal direction due to water entrainment in the vicinity of the outlet and rarely changes for increased Richardson number. Similarity collapses of velocity and excess density are obtained, but those of turbulent kinetic energy and dissipation rate are not. A shape factor for the dense interflow is obtained from the simulated profiles. The value of this shape factor can be used in the layer-averaged modeling of dense interflows. In addition, a buoyancy-related parameter ($c_{3{\varepsilon}}$) for the $k-{\varepsilon}$ model and the volume expansion coefficient (${\beta}_0$) are obtained from the simulated results.

Internal kinematics of dwarf early-type galaxies with blue-center in the Virgo Cluster from Gemini GMOS long-slit spectroscopy

  • Chung, Jiwon;Rey, Soo-Chang;Sung, Eon-Chang;Lee, Youngdae;Kim, Suk;Lee, Woong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.33.1-33.1
    • /
    • 2016
  • Dwarf elliptical galaxies (dEs), the most abundant galaxy type in clusters, were recently shown to exhibit a wide variety in their properties. Particularly, the presence of blue cores in some dEs, what we call dE(bc), supports the scenario of late-type galaxy infall and subsequent transformation into red, quiescent dEs. While several transformation mechanisms for these dE(bc)s within cluster environment have been proposed, all these processes are able to explain only some of the observational properties of dEs. In this context, internal kinematic properties of dE(bc)s provide the most crucial evidence to discriminate different processes for the formation of these galaxies. We present Gemini Multi Object Spectrograph (GMOS) long-slit spectroscopy of two dE(bc)s in the Virgo cluster. We obtained radial profiles of velocity and velocity dispersion out to ~1.3 effective radius. We found that two dE(bc)s exhibit kinematically decoupled components as well as distinct peculiar features in velocity profiles, supporting the scenario of mergers. We also found that these galaxies are structurally compatible with low surface brightness component of blue compact dwarf galaxies. We suggest that a part of dE(bc)s in the Virgo Cluster were formed through galaxy merger in low density environment such as galaxy group or outskirt of the cluster, and then were quenched by subsequent effects within cluster environment.

  • PDF

Identification of high-dip faults utilizing the GRM technique of seismic refraction method(Ⅱ) -Application to real data- (굴절파 GRM 해석방법을 응용한 고경사 단층 인지 (Ⅱ) -실제 자료 적용-)

  • Kim, Gi Yeong;U, Nam Cheol
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.1
    • /
    • pp.65-74
    • /
    • 1999
  • From refraction data along four seismic profiles near Eonyang which the Yangsan fault passes through, the Slope Variation Indicators (SVI) are computed and interpreted in terms of fault distribution. The average velocities of 2,250-2,870 m/s are estimated using velocity-analysis functions for the target boundary along those profiles. The average velocity for Line 1 is approximately 600 m/s lower than ones for the other lines. The SVI's with amplitude greater than or equal to 0.5 ms/m are turned out to be located near faults shown on the high-resolution reflection section, as closely as one station spacing (3 m). Large amplitude SVI's are densely distributed near National Road 35, and the fault having the largest vertical slip is indicated to be located approximately 930 m west of the inferred fault on the published geologic map.

  • PDF

Topography, Vertical and Horizontal Deformation In the Sulzberger Ice Shelf, West Antarctica Using InSAR

  • Kwoun Oh-Ig;Baek Sangho;Lee Hyongki;Sohn Hong-Gyoo;Han Uk;Shum C. K.
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.1
    • /
    • pp.73-81
    • /
    • 2005
  • We construct improved geocentric digital elevation model (DEM), estimate tidal dynamics and ice stream velocity over Sulzberger Ice Shelf, West Antarctica employing differential interferograms from 12 ERS tandem mission Synthetic Aperture Radar (SAR) images acquired in austral fall of 1996. Ice, Cloud, and land Elevation Satellite (ICESat) laser altimetry profiles acquired in the same season as the SAR scenes in 2004 are used as ground control points (GCPs) for Interferometric SAR (InSAR) DEM generation. 20 additional ICESat profiles acquired in 2003-2004 are then used to assess the accuracy of the DEM. The vertical accuracy of the OEM is estimated by comparing elevations with laser altimetry data from ICESat. The mean height difference between all ICESat data and DEM is -0.57m with a standard deviation of 5.88m. We demonstrate that ICESat elevations can be successfully used as GCPs to improve the accuracy of an InSAR derived DEM. In addition, the magnitude and the direction of tidal changes estimated from interferogram are compared with those predicted tidal differences from four ocean tide models. Tidal deformation measured in InSAR is -16.7cm and it agrees well within 3cm with predicted ones from tide models. Lastly, ice surface velocity is estimated by combining speckle matching technique and InSAR line-of-sight measurement. This study shows that the maximum speed and mean speed are 509 m/yr and 131 m/yr, respectively. Our results can be useful for the mass balance study in this area and sea level change.

Estimating the shear velocity profile of Quaternary silts using microtremor array (SPAC) measurements (Microtremor 배열 (SPAC) 측정을 이용한 제4기 실트층의 S파 속도구조 추정)

  • Roberts James;Asten Michael
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.1
    • /
    • pp.34-40
    • /
    • 2005
  • We have used the microtremor method, with arrays of up to 96 m diameter, to carry out non-invasive estimation of shear-wave velocity profiles to a depth of 30 to 50 m in unconsolidated Quaternary Yarra Delta sediments. Two silt units (Coode Island Silt, and Fishermans Bend Silt) dominate our interpretation; the method yields shear velocities for these units with precision of $5\%$, and differentiates between the former, softer unit ($V_s$=130 m/sec) and the latter, firmer unit ($V_s$=235 m/sec). Below these silts, the method resolves a firm unit correlating with known gravels ($V_s$ 500 to 650 m/sec). Using surface traverses with the single-station H/V spectral ratio method, we show that the variation in thickness of the softer silt can be mapped rapidly but only qualitatively. The complexity of the geological section requires that array methods be used when quantitative shear-wave velocity profiles are desired.

Effects of Port Shape on Steady Flow Characteristics in an SI Engine with Semi-Wedge Combustion Chamber (2) - Velocity Distribution (2) (반 쐐기형 연소실을 채택한 SI 기관에서 포트형상이 정상유동 특성에 미치는 영향 (2) - 유속분포 (2))

  • Yoon, Inkyoung;Ohm, Inyong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.2
    • /
    • pp.97-107
    • /
    • 2017
  • This study is the second investigation on the steady flow characteristics of an SI engine with a semi-edge combustion chamber as a function of the port shape with varying evaluation positions. For this purpose, the planar velocity profiles were measured from 1.75B, 1.75 times of bore position apart from the bottom of head, to 6.00B positions using particle - image velocimetry. The flow patterns were examined with both a straight and a helical port. The velocity profiles, streamlines, and centers of swirl were almost the same at the same valve lift regardless of the measuring position, which is quite different from the case of the pent-roof combustion chamber. All the eccentricity values of the straight port were out of distortion criterion 0.15 through the lifts and the position. However, the values of the helical port exceeded the distortion criterion by up to 4 mm lift, but decreased rapidly above the 3.00B position and the 5 mm lift. There always existed a relative offset effect in the evaluation of the swirl coefficient using the PIV method due to the difference of the ideal impulse swirl meter velocity profile assumption, except for the cylinder-center-base estimation that was below 4 mm of the straight port. Finally, it was concluded that taking the center as an evaluation basis and the assumption about the axial velocity profile did not have any qualitative effect on swirl evaluation, but affected the value owing to the detailed profile.

THE FORMATION OF THE DOUBLE GAUSSIAN LINE PROFILES OF THE SYMBIOTIC STAR AG PEGASI

  • Hyung, Siek;Lee, Seong-Jae
    • Journal of The Korean Astronomical Society
    • /
    • v.53 no.2
    • /
    • pp.35-42
    • /
    • 2020
  • We analyze high dispersion emission lines of the symbiotic nova AG Pegasi, observed in 1998, 2001, and 2002. The Hα and Hβ lines show three components, two narrow and one underlying broad line components, but most other lines, such as HI, HeI, and HeII lines, show two blue- and red-shifted components only. A recent study by Lee & Hyung (2018) suggested that the double Gaussian lines emitted from a bipolar conical shell are likely to form Raman scattering lines observed in 1998. In this study, we show that the bipolar cone with an opening angle of 74°, which expands at a velocity of 70 km s-1 along the polar axis of the white dwarf, can accommodate the observed double line profiles in 1998, 2001, and 2002. We conclude that the emission zone of the bipolar conical shell, which formed along the bipolar axis of the white dwarf due to the collimation by the accretion disk, is responsible for the double Gaussian profiles.

On Flow Field over a Fixed Dune (Sand Dune 주위유동장에 대하여)

  • Hyun B. S.;Patel V. C.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.5 no.4
    • /
    • pp.57-62
    • /
    • 2002
  • The present study deals with turbulent flow over a long train of fixed two-dimensional dunes, identical in size and shape. A detailed study was carried out by PIV over a range of flow depths in a fully developed region. The present study confirmed the global features of flow past a fired dune noticed in previous studies, i.e. the size and shape of the reverse flow, the mean velocity and turbulence profiles across the separated and attached flows. The turbulence and shear stress profiles reveal the presence of larger values along the line extending from crest to crest. At stations ahead of the dune crest, the presence of a peak in the streamwise turbulence profiles around y/h = 2 indicates the sustenance of turbulence generated in the separation zone of the previous zone which will be carried over to the next dune.

  • PDF

Downburst versus boundary layer induced wind loads for tall buildings

  • Kim, Jongdae;Hangan, Horia;Eric Ho, T.C.
    • Wind and Structures
    • /
    • v.10 no.5
    • /
    • pp.481-494
    • /
    • 2007
  • Downbursts are transient phenomena that produce wind profiles that are distinctly different from synoptic boundary layers. Wind field data from Computational Fluid Dynamics (CFD) simulations of isolated downburst-like impinging jets, are used to investigate structural loads of tall buildings due to these high intensity winds. The base shear forces and base moments of tall buildings of heights between 120 and 250 m produced by downburst winds of various scales are compared with the forces from the equivalent boundary layer gust winds, with matched 10-metre wind velocity. The wind profiles are mainly functions of the size of the downburst and the radial distance from the centre of the storm. Wind forces due to various downburst profiles are investigated by placing the building at different locations relative to the storm center as well as varying the size of the downburst. Overall it is found that downbursts larger than approx. 2,000 m in diameter might produce governing design wind loads above those from corresponding boundary layer winds for tall buildings.