• Title/Summary/Keyword: Velocity profiles

Search Result 900, Processing Time 0.022 seconds

DUFOUR AND HEAT SOURCE EFFECTS ON RADIATIVE MHD SLIP FLOW OF A VISCOUS FLUID IN A PARALLEL POROUS PLATE CHANNEL IN PRESENCE OF CHEMICAL REACTION

  • VENKATESWARLU, M.;BABU, R. VASU;SHAW, S.K. MOHIDDIN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.21 no.4
    • /
    • pp.245-275
    • /
    • 2017
  • The present investigation deals, Dufour and heat source effects on radiative MHD slip flow of a viscous fluid in a parallel porous plate channel in presence of chemical reaction. The non-linear coupled partial differential equations are solved by using two term perturbation technique subject to physically appropriate boundary conditions. The numerical values of the fluid velocity, temperature and concentration are displayed graphically whereas those of shear stress, rate of heat transfer and rate of mass transfer at the plate are presented in tabular form for various values of pertinent flow parameters. By increasing the slip parameter at the cold wall the velocity increases whereas the effect is totally reversed in the case of shear stress at the cold wall. It is observed that the effect of Dufour and heat source parameters decreases the velocity and temperature profiles.

1D Probabilistic Ground Response Analysis (지반 구조의 불확실성이 고려된 1차원 확률론적 지반응답해석)

  • Hwang, Hea Jin;Park, Hyung Choon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.73-78
    • /
    • 2014
  • In this paper, the stochastic 1D site response analysis method using Monte Carlo simulation and considering thespatial variation of shear wave velocity profile isproposed. To consider thespatial variation of shear wave velocity profile for 1D site response analysis, the proposed method generates random shear wave velocity profiles representing the target site, and Monte Carlo simulation is used to calculate theprobability distribution of the site response analysis results such as thepeak ground acceleration. Through the field application, The applicability of the proposed method is verified through field application.

Experiments for the Characteristic Evaluation of Pollutant Transport in Tidal Influenced Region (조파역내 오염물 이동특성 평가 실험)

  • Park, Geon Hyeong;Kim, Ki Chul;Jung, Sung Hee;Suh, Kyung Suk
    • Journal of Radiation Industry
    • /
    • v.4 no.4
    • /
    • pp.391-395
    • /
    • 2010
  • The characteristics for pollutant transport in tidal influenced area was investigated using tidal wave hydraulic scale model. Hydraulic scale model was composed of the tidal generator, attenuation area and channel. Also, wave height, current meter and conductivity meter were used with the measured instruments in hydraulic scale model. NaCl with a tracer was used to evaluate the advection phenomena under the different velocity profiles. The arrival time of the maximum concentration in the condition of the relatively fast velocity was measured about 30 seconds faster than ones in the conditions of low velocity. The measured concentrations of the tracer were shown in the detection points of the flow direction consecutively.

An investigation of the structure of ensemble averaged extreme wind events

  • Scarabino, A.;Sterling, M.;Richards, P.J.;Baker, C.J.;Hoxey, R.P.
    • Wind and Structures
    • /
    • v.10 no.2
    • /
    • pp.135-151
    • /
    • 2007
  • This paper examines the extreme gust profiles obtained by conditionally sampling full-scale velocity data obtained in the lower part of the atmospheric boundary layer. It is demonstrated that three different types of behaviour can be observed in the streamwise component of velocity. In all cases the corresponding vertical velocity component illustrates similar behaviour. An idealised horseshoe vortex model and a downburst model are investigated to examine if such structures can explain the behaviour observed. In addition, an empirical model is developed for an isolated gust corresponding to each of the three types of behaviour observed. It is possible that the division of the gust profile into three different types may lead to an improvement in the correlation of extreme gust events with respect to type.

Strong Orientation Anchoring and Shear Flow of a Nematic Liquid Crystal

  • Won Hee HAN
    • International journal of advanced smart convergence
    • /
    • v.13 no.2
    • /
    • pp.103-109
    • /
    • 2024
  • A nonlinear numerical analysis of orientation and velocity fields of the full Ericksen-Leslie theory for a nematic liquid crystal under shear flow is given. We obtained for the first time the three-dimensional orientation and two component velocity profiles evolutions for both in- and out-of-shear plane orientation anchorings. Complex evolution routes to steady state were found even for shear aligning nematic. As the Ericksen number increases monotonic evolution of velocity and orientation shifts towards multi-region nucleating director rotation growth with complex secondary flow generations. We found that contrary to the in-shear-plane anchorings like homeotropic or parallel anchorings, binormal anchoring gives rise to substantial non-planar three-dimensional orientation with nonzero secondary flow.

P-wave Velocity Anisotropy in the Upper Crust of the Southern Korean Peninsula Using Seismic Signals from Large Explosions (대규모 발파자료를 이용한 한반도 남부 상부지각의 종파 속도 이방성)

  • Hong, Myung-Ho;Kim, Ki-Young
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.3
    • /
    • pp.225-232
    • /
    • 2009
  • As part of seismic experiments investigating crustal velocity structures of the Korean peninsula, permanent (fixed) seismographs of the Korea Meteorological Administration (KMA) network recorded seismic signals from four and eight large explosions in Korean Crustal Research Team (KCRT) profiles shot in 2004 and 2008, respectively. Among the seismograms recorded by 43 velocity sensors and 103 accelerometers at KMA stations distributed throughout the southern Korean Peninsula, 156 records with epicentral distances less than 120 km and high signal-to-noise ratios were analyzed to determine velocity anisotropy of the Pg phase. Relative elevation corrections of -101.6 to 105.3 ms were made using velocity information derived from the 2004 KCRT profile data and differences in elevation between the permanent KMA stations and the temporary stations in the KCRT profiles at the same source-receiver offsets. To remove site effects, receiver-station corrections of -89.6 to 192.2 ms were additionally made to the KMA station data by subtracting the average differences in traveltimes between KMA stations and portable stations at the same offsets for all available shots with different azimuths. With the exception of anomalously fast velocities along trends of the Chugaryeong fault zone and the Okchon fold belt and anomalously slow velocities in the regions of high terrestrial heat near Yeongduk and Ulsan, the analysis of crustal velocity anisotropy using the Pg phase indicates overall isotropy in the southern half of the Korean peninsula.

Torque Control of DC Motor Using Velocity Profile Based Acceleration/Deceleration Control (속도 프로파일 기반의 가감속제어를 통한 DC 모터의 토크제어)

  • Lee, Jong-Yeon;Hyun, Chang-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.1
    • /
    • pp.36-41
    • /
    • 2012
  • This paper presents torque control of DC motor using the velocity profile based acceleration/deceleration controller for automatic guided vehicles (AGVs). This technique has some advantage; to reduce the damage of motors and to extend the life time of motors. First, we generate velocity profiles for three cases and design the state feedback controller using the generated velocity profile as a reference. The state feedback controller has servo system for solving regulation problem. For the verification, we apply the proposed method to control a cart position and shows some simulation result.

Uncertainty Evaluation of Velocity Integration Method for 5-Chord Ultrasonic Flow Meter Using Weighting Factor Method (가중계수법을 이용한 5회선 초음파 유량계의 유속적분방법의 불확도 평가)

  • Lee, Ho-June;Lee, Kwon-Hee;Noh, Seok-Hong;Hwang, Sang-Yoon;Noh, Young-Ah
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.287-294
    • /
    • 2005
  • Flow rate measurement uncertainties of the ultrasonic flow meter are generally influenced by many different factors, such as Reynolds number, flow distortion, turbulence intensity, wall surface roughness, velocity integration method along the acoustic paths, and transducer installation method, etc. Of these influencing factors, one of the most important uncertainties comes from the velocity integration method. In the present study, a optimization weighting factor method for 5-chord, which is given by a function of the chord locations of acoustic paths, is employed to obtain the mean velocity in the flow through a pipe. The power law profile is assumed to model the axi-symmetric pipe flow and its results are compared with the present weighting factor concept. For an asymmetric pipe flow, the Salami flow model is applied to obtain the velocity profiles. These theoretical methods are also compared with the previous Gaussian, Chebyshev, and Tailor methods. The results obtained show that for the fully developed turbulent pipe flows with surface roughness effects, the present weighting factor method is much less sensitive than Chebyshev and Tailor methods, leading to a better reliability in flow rate measurement using the ultrasonic flow meters.

  • PDF

A Study on Characteristics of Unsteady Laminar Flows in Squaresectional $180^{\circ}$ Curved Duct (정사각단면 $180^{\circ}$ 곡관덕트의 입구영역에서 비정상층류유동의 유동특성에 관한 연구)

  • Park, G.M.;Mo, Y.W.;Cho, B.K.
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.4
    • /
    • pp.515-524
    • /
    • 1996
  • The flow characteristics of developing unsteady laminar flow in a square-sectional $180^{\circ}$ curved duct are experimentally investigated by using laser doppler velocimerty (LDV) system with data acquisition and processing system of rotating machinery resolver(RMR) and PHASE software. The major flow characteristics of developing laminar pulsating flows are presented by mean velocity profilel velocity distribution of secondary flow, wall shear stress distributions, entrance lengths according to dimensionless angular frequency($\omega^+$), velocity amplitude ratio($A^1$), and time-averaged Dean number($De_ta$). The velocity profiles and wall shear stress distribution of laminar pulsating flow with dimensionlessangular frequency show the flow characteristics of the quasi-steady laminar flow in a curved duct. The developing region of laminar pulsatile flows in a square-sectional $180^{\circ}$ curved duct is extended to the curved duct angle of approximately $120^{\circ}$ under the present experimental condition.

  • PDF

Kennicutt-Schmidt law with H I velocity profile decomposition in NGC 6822

  • Park, Hye-Jin;Oh, Se-Heon;Wang, Jing;Zheng, Yun;Zhang, Hong-Xin;de Blok, W.J.G.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.32.3-33
    • /
    • 2021
  • We present H I gas kinematics and star formation activities of NGC 6822, a dwarf galaxy located in the Local Volume at a distance of ~ 490 kpc. We perform profile decomposition of the line-of-sight velocity profiles of the high-resolution (42.4" × 12" spatial; 1.6 km/s spectral) H I data cube taken with the Australia Telescope Compact Array (ATCA). For this, we use a new tool, the so-called BAYGAUD (BAYesian GAUssian Decompositor) which is based on Bayesian Markov Chain Monte Carlo (MCMC) techniques, allowing us to decompose a line-of-sight velocity profile into an optimal number of Gaussian components in a quantitative manner. We classify the decomposed H I gas components of NGC 6822 into bulk-narrow, bulk-broad, and non_bulk with respect to their velocity and velocity dispersion. We correlate their gas surface densities with the surface star formation rates derived using both GALEX far-ultraviolet and WISE 22 micron data to examine the impact of gas turbulence caused by stellar feedback on the Kennicutt-Schmidt (K-S) law. The bulk-narrow component that resides within r25 is likely to follow the linear extension of the Kennicutt-Schmidt (K-S) law for molecular hydrogen (H2) at the low gas surface density regime where H I is not saturated.

  • PDF