• Title/Summary/Keyword: Velocity profiles

Search Result 900, Processing Time 0.022 seconds

A Study on the Pulse Doppler System with M-mode Image and Spectrum Analyzer (주파수 해석기와 M-mode 영상을 갖는 펄스 도플러 장치의 개발에 관한 연구)

  • Jeong, Taek-Seob;Park, Sei-Hyun;Kim, Young-Kil
    • Proceedings of the KIEE Conference
    • /
    • 1987.07b
    • /
    • pp.1217-1220
    • /
    • 1987
  • We have developed a Ultra Sound Pulsed Doppler System with two-dimensional M-mode image and Spectrum analyzer. The image of the M-mode is composed of time and depth axes. The Spectrum analyzer shows the spectrum of Doppler signal which represents the velocity component of time dependent blood-flow behavior. The spectrogram using Spectrum analyzer is composed of frequency and amplitude axes. The outputs of the system are audio signals, velocity curves, velocity profiles, M-mode images and spectrogram.

  • PDF

Three-Dimensional Numerical Simulation on a Circular-to-Rectangular Transition Duct (Circular-to-Rectangular Transition Duct 에서의 3차원 유동장에 관한 연구)

  • Cho Soo-Yong;Son Ho-Jae
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.55-61
    • /
    • 1998
  • The purpose of this study is to compare the predictive behaviors of the extended $k-{\varepsilon}$ turbulence model and the standard $k-{\varepsilon}$ turbulence model. Grid dependency is tested with the H-type grid and the O-type grid. Computations have been performed for a circular-to-rectangular transition duct. Numerical results for several sections along the streamwise have been obtained to compare with experimental results. The Reynolds number is 390,000 based on the bulk velocity at the inlet. The computed axial velocity contours, transverse velocity profiles, static pressure contours, peripheral skin friction coefficient, and peripheral wall static pressure distributions have been compared with experimental results. The computed results obtained with the extended $k-{\varepsilon}$ turbulence model show better agreement with experimental results than those obtained with the standard $k-{\varepsilon}$ turbulence model. Comparing to the computed results obtained with the H-type grid and O-type grid, those with H-type grid agree well with experimental results.

  • PDF

Experimental Study on the Flow around a Circular Cylinder with Tripping Wires (트리핑 와이어가 설치된 원형실린더 주위의 유동현상 연구)

  • 류병남;부정숙;조민기
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.413-422
    • /
    • 2004
  • The flow characteristic in the wake around a circular cylinder with tripping wires, which was set in constant distance, was experimentally investigated in the uniform flow, Re=2.92$\times10^4$. The measurement of velocity vector and pressure distribution are carried out various angles of tripping wires in the range of $50^(\circ)$ to $80^(\circ)$ with $10^(\circ)$ interval. The results show that velocity profiles and pressure distributions are different with angles of tripping wires. The drag of the circular cylinder was decreased about 60% maximum when tripping wires' angle was $50^(\circ)$. The lowest reduction of the velocity and wake width was occurred by coanda effect when the angle was $60^(\circ)$, and the vortex shedding periodicity become rare at the same time.

A Study on the Comparison Between Experimental and Numerical Analysis for Developing Turbulent Steady Flows in the Entrance Region of a Square Duct (정4각덕트의 입구영역에서 난류정상유동의 실험해와 수치해의 비교에 관한 연구)

  • 고영하;박길문;봉태근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.3
    • /
    • pp.236-245
    • /
    • 1997
  • The flow characteristics of developing turbulent steady flow are investigated numerically and experimentally in the entrance region of a square duct ($40 mm{\times}40 mm$ and 4, 000 mm). The numerical anaysis are incorporated by finite- volume discretization with staggered grid system and SIMPLE algorithm. The numerical solution are compared with experimental results of mean velocity profiles, turbulence intensity and entrance length. For turbulent steady flow, the turbulent components in the velocity waveforms increase as the dimensionless transverse position approaches the wall. Thrbulence intensity increases as the dimensionless transverse position increases from the center to the wall of the duct for the developing turbulent steady flows. The entrance length of the turbulent steady flow is about 40 times as large as the hydraulic diameter under the present experimental condition.

  • PDF

Turbulence Structures of Flow in Concentric Annuli with Rough Outer Wall (외벽에 거칠기가 있는 이중동심관 유동의 난류구조)

  • 김경천;안수환;이병규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2443-2453
    • /
    • 1994
  • The structure of turbulence of fully developed flow through four concentric annuli with the rough outer wall was investigated experimentally for a Reynolds number range Re=15, 000-93, 000. Turbulence intensities were measured in three(u, v, w) directions, and turbulence shear stresses in annuli of radius=0.13, 0.26, 0.4 and 0.56, respectively. Due to the square roughness element attached periodically along the axial direction, the radial velocity fluctuations show similar distribution regardless of the different .alpha.cases. However, the axial and circumferential velocity fluctuation profiles demonstrate the longitudinal turbulence structures are strongly influenced by the .alpha. values. The turbulent eddy viscosity deduced form mean velocity distributions and the measured Reynolds shear stresses are also presented and discussed.

Measurement of Turbulent Flows in a Square Sectioned $270^{\circ}$ Bend (열선 유속계에 의한 정사각형 단면의 270도 곡관에서의 난류유동 특성에 관한 연구)

  • Cho, Sok-Hyu;Chun, Kun-Ho;Lee, Gun-Hyee
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.467-472
    • /
    • 2000
  • Most of the past experimental or analytical studies were performed for the curved bend with a square cross-section. Velocity profiles and Reynolds stresses of the turbulence flow in the 270 degree bend with circular cross-section were measured by a hot-wire anemometer. The mean velocity of primary flowing direction effected by the downstream of bend in the entry region of the bend. The flow in the inner part of the bend slowed the distribution velocity relatively large and unsymmetric phenomenon. In the strong secondary flow occurred when the flow passed in the region of 45 degree to 90 degree. The secondary flow appeared very large value in the neighbor region of inner wall.

  • PDF

Control of Impinging Jet Heat Transfer with Mesh Screens (Mesh 스크린을 이용한 충돌제트 열전달 제어에 관한 연구)

  • Cho, Joung-Won;Lee, Sang-Joon
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.267-271
    • /
    • 2000
  • The local heat transfer rate of an axisymmetric submerged air jet impinging on normal to a heated flat plate was investigated experimentally with varying solidity of mesh screen. The mean velocity and turbulent Intensity profiles of streamwise velocity component were measured using a hot-wire anemometry. The temperature distribution on the heated flat surface was measured with thermocouples. The screen installed in front of the nozzle exit(behind of 35mm) modify the jet flow structure and local heat transfer characteristics. For higher solidity screen, turbulence intensity at core lesion is high and increases the local heat transfer rate at nozzle-to-plate spacings(L/D<6). For larger nozzle-to-plate spacings(L/D>6), however, the turbulent Intensities of all screens tested in this study approach to an asymptotic curve, but the small mean velocity at the core region reduces the local heat transfer rate for high solidity screens.

  • PDF

Echo-PIV: in vivo Flow Measurement Technique (에코 PIV: in vivo 유동 측정기법)

  • kim Hyoung-Bum;Hertzberg Jean;Shandas Robin
    • Journal of the Korean Society of Visualization
    • /
    • v.3 no.1
    • /
    • pp.26-35
    • /
    • 2005
  • The combination of ultrasound echo images with digital particle image velocimetry (DPIV) method has resulted in a two-dimensional, two-component velocity field measurement technique appropriate for opaque flow conditions including blood flow in clinical applications. Advanced PIV processing algorithms including an iterative scheme and window of offsetting were used to increase spatial resolution. The optimum concentration of the ultrasound contrast agent used for seeding was explored. Velocity validation tests in fully developed laminar pipe flow and pulsatile flow showed good agreement with both optical PIV measurements and the known analytic solution. These studies indicate that echo PIV is a promising technique for the non-invasive measurement of velocity profiles and shear stress.

  • PDF

A Study on the Wake Flow behind a Circular Cylinder with a Spinning Control Cylinder (회전하는 제어원주가 설치된 원주후류의 유동장에 관한 연구)

  • 부정숙;류병남;심정훈
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.58-69
    • /
    • 2000
  • An experimental study was conducted to investigate the influence of the spinning control cylinders which was set on the surface of a fixed circular cylinder in uniform flow, $Re=1.24\times10^4$. The measurements of velocity vectors and pressure distributions are carried out in various spin parameters and angles of spinning control cylinder. The results show that velocity profiles and pressure distributions are different with angles of control cylinder and spin parameters. When the control cylinder angle is $100^{\circ}$, there is more effect in increasing the velocity and the pressure distribution than other cases. In this case, the vortex shedding frequency was increased as increasing spin parameter.

  • PDF

CONSTRUCTION OF A PILOT HEADBOX SYSTEM AND PRESSURE MONITORING APPARATUS FOR THE DEVELOPMENT OF HIGH SPEED HYDAULIC HEADBOXES

  • Youn, Hye-Jung;Lee, Hak-Lae
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 1999.04b
    • /
    • pp.381-385
    • /
    • 1999
  • To investigate the influence of the design and operating parameters of the headbox on hydrodynamics, a pilot headbox system and pressure monitoring apparatus were constructed. The pilot headbox system consisted of a circulating water reservoir, centrifugal pump, distributor, step diffusor and slice. The distributor was designed to function as a pressure attenuator. Flow rate to the headbox and MD and CD velocity profiles in the slice zone were monitored using an ultrasonic flowmeter and Pitot tubes, respectively. As the distance from the step diffusor increased, evener CD velocity profile was observed. Wall effect increased with the increase of the velocity. Flow stability in the headbox was evaluated by injecting a dye at the outlet of the distributor. Application of theoretical analysis based on CFD in designing headboxes is briefly discussed.