• Title/Summary/Keyword: Velocity profiles

Search Result 900, Processing Time 0.025 seconds

ANALYSES ON FLOW FIELDS AND PERFORMANCE OF A CROSS-FLOW FAN WITH VARIOUS SETTING ANGLES OF A STABILIZER

  • Kim D. W.;Kim H. S.;Park S. K.;Kim Youn J
    • Journal of computational fluids engineering
    • /
    • v.10 no.1
    • /
    • pp.107-112
    • /
    • 2005
  • A cross-flow fan is generally used on the region within the low static pressure difference and the high flow rate. It relatively makes high dynamic pressure at low rotating speed because a working fluid passes through an impeller blade twice and blades have a forward curved shape. At off-design points, there are a rapid pressure head reduction, a noise increase and an unsteady flow. Those phenomena are remarkably influenced by the setting angle of a stabilizer. Therefore, it should be considered how the setting angle of a stabilizer affects on the performance and the flow fields of a cross-flow fan. It is also required to investigate the effect of the volumetric flow rate before occurring stall. Two-dimensional, unsteady governing equations are solved using a commercial code, STAR-CD, which uses FVM. PISO algorithm, sliding grid system and standard k - ε turbulence model are also adopted. Pressure and velocity profiles with various setting angles are graphically depicted. Furthermore, the meridional velocity profiles around the impeller are plotted with different flow rates for a given rotating speed.

Prediction of Wall Shear Stresses in Transitional Boundary Layers Using Near-Wall Mean Velocity Profiles

  • Jeon, Woo-Pyung;Shin, Sung-Ho;Kang, Shin-Hyoung
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.11
    • /
    • pp.1305-1318
    • /
    • 2000
  • The local wall shear stress in transitional boundary layer was estimated from the near-wall mean velocity data using the principle of Computational Preston Tube Method(CPM). The previous DNS and experimental databases of transitional boundary layers were used to demonstrate the accuracy of the method and to provide the applicable range of wall unit y(sup)+. The skin friction coefficients predicted by the CPM agreed well with those from previous studies. To reexamine the applicability of CPM, near-wall hot-wire measurement were conducted in developing transitional boundary layers on a flat plate with different freestream turbulence intensities. The intermittency profiles across the transitional boundary layers were reasonably obtained from the conditional sampling technique. An empirical correlation between the representative intermittency near the wall and free parameter K$_1$of the extended wall function of CPM has been newly proposed using the present and other experimental data. The CPM has been verified as a useful tool to measure the wall shear stress in transitional boundary layer with reasonable accuracy.

  • PDF

Velocity and temperature profiles of Al/water micro fluid in a circular tube with swirl

  • Chang, Tae-Hyun;Lee, Kwon Soo;Lee, Chang-Hoan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.7
    • /
    • pp.677-684
    • /
    • 2013
  • A lot study of convection heat transfer on internal flow has been extensively conducted in the past decades using of high specific surface area, increasing heat transfer coefficient, swirling flow and improving the transport properties. This study concerned with the application of a tangential slot swirl generator for improving heat transfer in a horizontal circular copper tube. The Al particles(about $100{\sim}130{\mu}m$) was employed for this experimental work. 3D PIV(particle image velocimetry) technique has employed to measure velocity profiles of Al particles with and without swirl flow. The copper tube is heated uniformly by winding of a heating coil for heat transfer work, having a resistance of 9 ohm per meter. Experiments are performed in the Reynolds number range of 6,800~12,100 with swirl and without swirl using Al particles. Experimental data for comparison of Nusselt number is presented that of with swirl and without swirl along the test tube for the Reynolds numbers. The Nusselt number is improved with increasing of Reynolds numbers or swirl intensities along the test tube. The Nusselt number with swirl flow is about 60.0% to 119.0% higher than that obtained by the Dittus-Boelter equation.

Numerical study on self-sustainable atmospheric boundary layer considering wind veering based on steady k-ε model

  • Feng, Chengdong;Gu, Ming
    • Wind and Structures
    • /
    • v.30 no.1
    • /
    • pp.69-83
    • /
    • 2020
  • Modelling incompressible, neutrally stratified, barotropic, horizontally homogeneous and steady-state atmospheric boundary layer (ABL) is an important aspect in computational wind engineering (CWE) applications. The ABL flow can be viewed as a balance of the horizontal pressure gradient force, the Coriolis force and the turbulent stress divergence. While much research has focused on the increase of the wind velocity with height, the Ekman layer effects, entailing veering - the change of the wind velocity direction with height, are far less concerned in wind engineering. In this paper, a modified k-ε model is introduced for the ABL simulation considering wind veering. The self-sustainable method is discussed in detail including the precursor simulation, main simulation and near-ground physical quantities adjustment. Comparisons are presented among the simulation results, field measurement values and the wind profiles used in the conventional wind tunnel test. The studies show that the modified k-ε model simulation results are consistent with field measurement values. The self-sustainable method is effective to maintain the ABL physical quantities in an empty domain. The wind profiles used in the conventional wind tunnel test have deficiencies in the prediction of upper-level winds. The studies in this paper support future practical super high-rise buildings design in CWE.

Determination of Shear Wave Velocity Profiles of Natural Soils and Pavement Systems Using Surface Wave Technique (표면파 기법을 이용한 자연지반 및 포장지반의 전단파 속도 분포 추정에 관한 연구)

  • Woo, Je Yoon;Kim, Soo Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.4
    • /
    • pp.49-57
    • /
    • 1988
  • A new analytical inversion technique is developed to determine the shear wave velocity profiles of natural soils and pavement systems from the dispersion curves of Rayleigh waves. Haskell's theory on the dispersion of the surface waves in multi-layered elastic solids is utilized. A frequency-unlimited dispersion equation is developed by use of the delta matrix technique. Rigid halfspace is assumed at the depth of the one wavelength of Rayleigh waves. Computer program is coded and validity of the technique is verified through the numerical model tests.

  • PDF

Simulation of Standing Wave using Boundary Element Method (경계요소법(境界要素法)을 이용한 중복파(重複波)의 재현(再現))

  • Oh, Young Min;Lee, Kil Seong;Chun, In Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.6
    • /
    • pp.1445-1451
    • /
    • 1994
  • To calculate the wave pressure acting on coastal structures under the design wave condition, it is often necessary to numerically reproduce the big standing wave profiles close to wave breaking condition. For this, the governing equation and all nonlinear terms occurring in boundary conditions should be effectively considered in the numerical wave profile. In particular, the velocity square term in the free surface boundary condition is very important. A boundary element method is applied here to calculate the standing wave profile with the velocity square term fully treated by Newton iterative method. In order to check the validity of the method, the numerical wave profiles are compared to ones calculated by the perturbation method, the Fourier approximation method and the hydraulic experiment.

  • PDF

An Experimental Study of Smoke Movement in Tunnel Fire with Natural and Forced Ventilations (자연 및 강제 배기시의 터널 내 연기거동에 관한 실험적 연구)

  • Hwang Cheol-Hong;Yoo Byung-Hun;Kum Sung-Min;Kim Jung-Yup;Shin Hyun-Joon;Lee Chang-Eon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.6 s.237
    • /
    • pp.711-721
    • /
    • 2005
  • In order to design of emergency ventilation systems, the smoke movements in tunnel fire with natural and forced ventilation were investigated. Reduced-scale experiments were carried out under the Froude scaling with novel fire source consisting many wicks. Temperature profiles were measured under the ceiling and vertical direction along the center of the tunnel and poisonous gases were measured at emergency exit point in the natural ventilation case. In forced ventilation, temperature profiles were measured with various flow rate to obtain critical velocity. The results showed that the interval of emergency exit having 225m was estimated reasonably through the measurements of temperature variation and poisonous gas in the natural ventilation. In the case of forced ventilation, the temperature distribution near fire source is remarkably different from that of natural ventilation. Also, the critical velocity to prevent upstream smoke flow has the range of 0.57m/s between 0.64m/s. Finally, it was also identified that although the increase of flow rate can suppress the backward flow of smoke to upstream direction, brings about the increase of flame intensity near stoichiometric fuel/air ratio.

Analysis of Fully Developed Multilayer Flow in Microchannel with a Rectangular Cross Section (직사각형 단면을 갖는 미세채널에서 완전 발달된 다층유동에 관한 해석)

  • Kim, Jung-Kyung;Jung, Chan-Il;Jang, Jun-Keun;Yoo, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.5
    • /
    • pp.644-654
    • /
    • 2003
  • An analytical solution for a vertically stratified viscous flow in a microchannel with a rectangular cross-section is constructed, assuming fully developed laminar flow where the interfaces between the fluid layers are flat. Although the solution is for n-layer flow, restricted results to symmetrical three-layer flow are presented to investigate the effects of the viscosity and thickness ratios of the fluid layers and the aspect ratio of the microchannel on the flow field. Relations between the flow rate and thickness ratios of the fluid layers with varying viscosity distributions are found, considering the cross -sectional velocity profiles which vary noticeably with the three parameters and differ significantly from the velocity profiles of the flow between infinite parallel plates. Interfacial instability induced by the viscosity stratification in the microchannel is discussed referring to previous studies on the instability analysis for plane multilayer flow. Exact solution derived in the present study can be used for examining a diffusion process and three -dimensional stability analysis. More works are needed to formulate the equations including the effects of interfacial' tension between immiscible liquids and surface wettability which are important in microscale transport phenomena.

Study on velocity profiles around spiral baffle plates in a horizontal circular tube without inner tubes

  • Chang, Tae-Hyun;Lee, Kwon-Soo;Choi, Yoon-Hwan;Lee, Yeon-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.5
    • /
    • pp.403-411
    • /
    • 2016
  • Usually shell and tube heat exchangers are employed to recover energy between fluids. Recently, numerous papers on these heat exchangers have been published; however, the velocity and temperature profiles or comparison of the features of the flow with or without inside tubes have rarely been described. In this research, experimental and numerical studies were carried out to investigate the characteristics of the flow around the spiral baffle plates without inside tubes in a horizontal circular tube using a particle image velocimetry method and ANSYS 14.0~15.0 version (Fluent). The results showed that swirling flow was produced between the spiral baffle plates. The tangential components were strong between the two spiral baffles; however, the axial or radial velocities components were indicating nearly zero. From the spiral motion in the space of the two baffles, it is considered that there were no dead zones between the spiral baffle.

Hydrocarbons in shallow sediments of the western Ulleung Basin (서부 울릉분지 천부 퇴적층의 탄화수소)

  • Ryu, Byong-Jae;Kim, Ji-Hoon;Lee, Young-Joo;Kim, Il-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.597-599
    • /
    • 2007
  • Studies on the hydrocarbons in shallow sediments of the East Sea of Korea have been carried out by the Korea Institute of Geoscience and Mineral Resources (KIGAM) since 2000. 4946 L-km of 2D multichannel reflection seismic data, 3250 L-km of high-resolution Chirp profiles and 16 selected piston cores were analyzed to determine the presence of hydrocarbons in shallow sediments of the western deep-water Ulleung Basin. The seismic data show a number of blanking zones that probably reflect widespread fluid and gas venting. The blanking zones are often associated with velocity pull-up structures. These upwelling structures are interpreted to be the result of high-velocity natural gas hydrate. There are also several bottom-simulating reflectors that are associated with free gas and probably overlying gas hydrate. Numerous pockmarks were also observed in the Chirp profiles. They are seafloor depressions caused by the removal of near-seafloor soft sediments by escaping of fluid and gas. In piston cores, cracks generally oriented parallel to bedding suggest significant gas content some of which may have been contained in gas hydrate in situ.

  • PDF