• Title/Summary/Keyword: Velocity of penetration

Search Result 372, Processing Time 0.026 seconds

A Study on Carbonation Progress of Concrete After Surface Repair method for remodeing apartment (아파트 리모델링을 위한 표면보수공법후 콘크리트의 탄산화 진행에 관한 연구)

  • Lee, Hyung-Min;Sung, Myung-Jin;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.15-16
    • /
    • 2014
  • As the importance of maintenance of reinforced concrete structure recently has emerged, the attention of durability of structure has been increasing. There are many studies about durability decline especially due to the carbonation. In order to study carbonation progress after surface repair of carbonated concrete, each carbonation penetration velocity from different repair materials of concrete structure is compared through the experiment of carbonation accelerating CO2 concentration to 100%. As carbonation infiltration progress is predicted through this study, the counterplan of service life evaluation will be prepared on selection of repair materials of concrete structure.

  • PDF

Macroscopic Behavior and Atomization Characteristics of Bio-diesel Fuels (바이오 디젤 연료의 분무 거동 및 미립화 특성)

  • Suh, Hyun-Kyu;Park, Sung-Wook;Kwon, Sang-Il;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.23-29
    • /
    • 2004
  • This work was conducted to figure out the atomization characteristics of three types of bio-diesel fuels using a common-rail injection system. The process of spray development was visualized by using a spray visualization system composed of a Nd:YAG laser and an ICCD camera, The spray tip penetrations were analyzed based on the frozen images from the spray visualization system. On the other hand, the microscopic atomization characteristics such as the distributions of SMD and axial mean velocity were measured by using a phase Doppler particle analyzer system, It is revealed that the sprays of the bio-diesel fuels have larger SMD than that of diesel fuel mainly due to high viscosity of bio-diesel. Different characteristics of bio-diesel fuels were also measured in spray tip penetrations according to the fuels and mixing ration.

A study on the Probabilistic Carbonation Progress for Existing RC Structure Apartment by Surface Finishing Materials (표면 마감재를 시공한 RC조 아파트의 확률론적 탄산화 평가 연구)

  • Lee, Hyung-Min;Min, Sang-Ho;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.7-8
    • /
    • 2017
  • As the importance of maintenance of reinforced concrete structure recently has emerged, the attention of durability of structure has been increasing. There are many studies about durability decline especially due to the carbonation. In order to study carbonation progress after surface repair of carbonated concrete, each carbonation penetration velocity from different repair materials of concrete structure is compared through the experiment of carbonation accelerating CO2 concentration to 5%. As carbonation infiltration progress is predicted through this study, the counterplan of service life evaluation will be prepared on selection of repair materials of concrete structure.

  • PDF

The Effects of Injector Nozzle Geometry and Operating Pressure Conditions on the Transient Fuel Spray Behavior

  • Koo, Ja-Ye
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.617-625
    • /
    • 2003
  • Effects of Injector nozzle geometry and operating pressure conditions such as opening pressure, ambient pressure. and injection pressure on the transient fuel spray behavior have been examined by experiments. In order to clarify the effect of internal flow inside nozzle on the external spray, flow details Inside model nozzle and real nozzle were alto investigated both experimentally and numerically. for the effect of injection pressures, droplet sizes and velocities were obtained at maximum line pressure of 21 MPa and 105 MPa. Droplet sizes produced from the round inlet nozzle were larger than those from the sharp inlet nozzle and the spray angle of the round inlet nozzle was narrower than that from the sharp inlet nozzle. With the increase of opening pressure, spray tip penetration and spray angle were increased at both lower ambient pressure and higher ambient pressure. The velocity and size profiles maintained similarity despite of the substantial change in injection pressure, however, the increased injection pressure produced a higher percentage of droplet that are likely to breakup.

A PARAMETRIC SENSITIVITY STUDY OF GDI SPRAY CHARACTERISTICS USING A 3-D TRANSIENT MODEL

  • Comer, M.A.;Bowen, P.J.;Sapsford, S.M.;Kwon, S.I.
    • International Journal of Automotive Technology
    • /
    • v.5 no.3
    • /
    • pp.145-153
    • /
    • 2004
  • Potential fuel economy improvements and environmental legislation have renewed interest in Gasoline Direct Injection (GDI) engines. Computational models of fuel injection and mixing processes pre-ignition are being developed for engine optimisation. These highly transient thermofluid models require verification against temporally and spatially resolved data-sets. The authors have previously established the capability of PDA to provide suitable temporally and spatially resolved spray characteristics such as mean droplet size, velocity components and qualitative mass distribution. This paper utilises this data-set to assess the predictive capability of a numerical model for GDI spray prediction. After a brief description of the two-phase model and discretisation sensitivity, the influence of initial spray conditions is discussed. A minimum of 5 initial global spray characteristics are required to model the downstream spray characteristics adequately under isothermal, atmospheric conditions. Verification of predicted transient spray characteristics such as the hollow-cone, cone collapse, head vortex, stratification and penetration are discussed, and further improvements to modelling GDI sprays proposed.

Validation of Hybrid Breakup Model and Vaporization Model for Analysis of GDI Spray Behavior (GDI 분무거동 해석을 위한 혼합분열모델 및 증발모델의 검증)

  • Shim, Young-Sam;Choi, Gyung-Min;Kim, Duck-Jool
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.187-194
    • /
    • 2005
  • The objective of this study is to validate the hybrid breakup model and the vaporization model for GDI spray analysis at vaporization and non-vaporization conditions. The atomization process is modeled by using hybrid breakup model that is composed of Linearized Instability Sheet Atomization (LISA) model and Aerodynamically Progressed Taylor Analogy Breakup (APTAB) model. The vaporization process is modeled by using modified Abramzon & Sirignano model. The exciplex fluorescence method was used for comparing the calculated results with the experimental ones. The experiment and the calculation were performed at the ambient pressures of 0.1 MPa, 0.5 MPa and 1.0 MPa and the ambient temperature of 293K and 473K.

10 years of outdoor Exposure based on the results of the Carbonation and Salinity Inhibition Finishing Materials Review (옥외 폭로 10년의 결과에 기초한 마감 재료의 중성화 및 염분 억제 효과 검토)

  • Park, Jae-Hong;Hasegawa, Takuya;Osamu, Senbu;Oh, Sang-Gyun;Park, Dong-Choen
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.45-47
    • /
    • 2011
  • Finishing materials used during the construction of reinforced concrete structures aid in providing resistance to carbonation and help ensure the durability of a structure. However, detailed examinations of this phenomena using data gained from long-term outdoor exposure are not only lacking, but also are not taken into account as factors affected by the local environment. In this research, the velocity coefficient in terms of carbonation is compared as a difference according to the local region and the averaged annual temperature, and the carbonation-preventive effects of finishing materials are analyzed. As an outcome of this study, the results of long-term carbonation can be evaluated from carbonation resistance R induced by an acceleration carbonation test.

  • PDF

An approach of using ideal gradating curve and coating paste thickness to design concrete performance-(2) Experimental work

  • Wang, H.Y.;Hwang, C.L.;Yeh, S.T.
    • Computers and Concrete
    • /
    • v.10 no.1
    • /
    • pp.35-47
    • /
    • 2012
  • The ideal gradating curve is used in this study to estimate densified aggregate blended ratio and total surface area of aggregate, there by under assigned paste amount of concrete, and coating paste thickness can then be deduced. Four groups of concrete mixtures were prepared and the corresponding concrete properties, such as workability, compression strength, ultrasonic velocity, surface resistivity and chloride ion penetration, were measured and finally the results are interpreted in terms of "coating thickness". The result shows as the coating thickness of the concrete is higher than critical one, the coating thickness on aggregate does affect the workability, and whatever workability is required the superplasticizer can be adjusted to achieve the demand workability. Under a fixed paste quality at the same age, coating paste thickness is inversely proportional to the concrete properties, especially as the coating thickness gets thinner.

The Research on Development of Flexible Linear Shaped Charge (유연성 선형 성형작약 개발에 관한 연구)

  • Park, Byung-Chan;Chang, Il-Ho;Lee, Woo-Jin;Jeon, Jin-Cheol
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.378-387
    • /
    • 2009
  • The shaped charge consists of the cast or pressed explosive and the metal liner. The pressure formed in detonation wave is so high that the liner is collapsed and the jet of high temperature, pressure and velocity is produced. The jet penetrates the target. In this paper, the simulation for optimization of flexible linear shaped charge(FLSC) was carried out by AUTODYNE program. Based on the results of simulation, we made a prototype of FLSC and evaluated penetration performance, flexibility and its application. The test result of prototype was compared with that of simulation.

Journal of the Environmental Sciences A Study on the Operating Conditions to Eliminate Feedpipe Backmixing for Fast Competitive Reactions

  • Jang, Jeong-Gook;Jo, Myung-Chan
    • Journal of Environmental Science International
    • /
    • v.20 no.8
    • /
    • pp.929-942
    • /
    • 2011
  • A novel conductivity technique was developed to detect penetration depth of the vessel fluid into the feedpipe. For a given reactor geometry, critical agitator speeds were experimentally determined at the onset of feedpipe backmixing using Rushton 6 bladed disk turbine (6BD) and high efficiency axial flow type 3 bladed (HE-3) impellers. The ratio of the feedpipe velocity to the critical agitator speed ($v_f/v_t$) was constant for either laminar or turbulent feedpipe flow regimes. Compared to the results of fast competitive reaction, feedpipe backmixing had to penetrate at least one feedpipe diameter into the feedpipe to significantly influence the yield of the side product. However, higher $v_f/v_t$ than that for L/d = 0 (position at the feedpipe end) of the conductivity technique is recommended to completely eliminate feedpipe backmixing in conservative design criteria. The conductivity technique was successful in all feedpipe flow conditions of laminar, transitional and turbulent flow regimes.