• Title/Summary/Keyword: Velocity of penetration

Search Result 372, Processing Time 0.025 seconds

Fuel Spray Characteristics of GDI Injector (직분식 가솔린기관 인젝터의 연료 분무 특성)

  • Kwon, Sang-Il;Lee, Chang-Sik
    • 한국연소학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.194-201
    • /
    • 2000
  • This paper is intended to analyze the macroscopic behavior and transient atomization characteristics of the high-pressure gasoline injector in direct-injection gasoline engine. The global spray behavior of fuel injector was visualized by shadowgraph technique. Time-resolved droplet axial and radial velocity components and droplet diameter were measured at many probe positions in both axial and radial directions by a two-component phase Doppler particle analyzer (PDPA). In order to obtain the influence of fuel injection pressure, the macroscopic visualization and experiment of particle measurement on the fuel spray were investigated at 3,5 and 7 MPa of injection pressure under different surrounding pressure in the spray chamber. The results of this work show that the fuel injection pressure of gasoline injector in GDI engine has influence upon the mean droplet diameter, mean velocity of spray droplet, the spray tip penetration, and spray width under the elevated ambient pressure.

  • PDF

Failure Properties of Concrete by Projectile Nose Type (선단형상이 다른 비상체의 충돌을 받는 콘크리트의 파괴특성)

  • Kim, Jae-Pil;Kim, Gyu-Yong;Kim, Hong-Seop;Kim, Jung-Hyun;Han, Sang-Hyu;Lee, Sang-Gyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.30-31
    • /
    • 2015
  • High velocity impact of projectile generate local failure such as penetration, scabbing, perforation on concrete. It has been reported that local failure is affected by such as nose shape, mass of projectile. In this study, comparing and weighing the impact failure properties of concrete by high velocity impact test that using spherical nose and flat nose type projectile. As a result, It was considered that scabbing of Flat nose projectile reduced more than spherical nose projectile by dispersion of impact force.

  • PDF

An Study on the Spray Structure of Fuel Port Injectors (포트 분사 연료 인젝터의 분무 구조에 관한 연구)

  • Lee, C.S.;Lee, K.H.;Chon, M.S.;Sohn, K.H.;Park, J.S.
    • Journal of ILASS-Korea
    • /
    • v.3 no.3
    • /
    • pp.42-48
    • /
    • 1998
  • This study describes the spray structure of gasoline port injectors by using phase Doppler particle analyzer(PDPA) and particle motion analysis system(PMAS). The characteristics of fuel spray such as the spray penetration, spray angle and breakup processes were obtained by PMAS and the droplet size and mean velocity were measured by PDPA system. Pintle type and two-hole type injectors were used as gasoline port fuel injectors under various injection pressures. The effect of injection pressure on the droplet mean diameter and axial mean velocity of droplet were investigated under the various injection conditions. In addition the comparison of breakup processes for the two types of injectors was also conducted. It Is shown that pintle type injector has smaller droplet size than that of two-hole type injector.

  • PDF

Experimental Investigation on the Flow Characteristics of High Pressurized Jet with Nozzle Aspect Ratio (노즐 형상비에 따른 고압분사의 유동 특성에 관한 실험적 연구)

  • Lee, Sang-Jin;Namkung, Jung-Hwan;Rho, Byung-Joon
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2031-2036
    • /
    • 2003
  • High-pressurized jet is widely using in industrial works. however, few papers studied on the performances or characteristics on that kind of nozzles. And in this study, some flow characteristics with the variation of nozzle aspect ratios such as mean velocity distributions, momentum variations along the center line have been experimentally investigated. As the results, some semi-empirical correlations of profiles of pressure and mean velocity distributions, momentum conservations with the nozzle aspect ratios are formulated. It is expected that these empirical formula can be applied for the random estimations of nozzle performances.

  • PDF

Three-Dimensional Numerical Model for Flow with Silt Protector (오탁방지막이 설치된 3차원 흐름 수치모델)

  • Hong, Nam-Seeg;Kim, Ga-Ya;Kang, Yoon-Koo
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.3
    • /
    • pp.1-7
    • /
    • 2008
  • In this study, a mathematical model for flaw with silt protector is proposed that adds a second-order energy loss term in the momentum equation. The three-dimensional numerical model was developed based on mathematical models and verified through comparison with flume test results. Loss coefficients were evaluated through the flume tests and applied to the numerical model. It was found through the investigation of various example cases that the downstream flow pattern was affected mainly by penetration of the silt curtain, not by the approach velocity, and also that the blocking effect of velocity was increased by the increase in mesh density of the silt curtain, below a certain mesh density. The blocking effect did not increase further above a certain mesh density.

Enthalpy Flow Loss by Steady Mass Streaming in Pulse Tube Refrigerators (맥동관냉동기의 정상상태 질량흐름에 의한 엔탈피손실)

  • 백상호;정은수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.7
    • /
    • pp.623-631
    • /
    • 2000
  • Effects of the taper angle and the angular velocity of a pulse tube on the enthalpy flow loss associated with the steady mass streaming were analysis by two-dimensional analysis of a pulse tube with variable cross-section. It was shown that the steady mass flux can lead to a large steady second-order temperature. The enthalpy flow loss associated with the steady mass streaming increases as the angular velocity increases. For a pulse tube where the viscous penetration depth is far thinner than the inner radius, the enthalpy flow loss can be significantly reduced by tapering the pulse tube since both the steady mass flux and the steady second-order temperature decrease as the taper angle increase.

  • PDF

Prediction of Delamination for Composite Laminates Using Sound Radiation (음향을 이용한 복합 적층판의 층간분리 예측)

  • Kim, Sung-Joon;Chae, Dong-Chul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.800-804
    • /
    • 2005
  • In this paper, the radiated sound pressure induced by low velocity impact is obtained by solving the Rayleigh integral equation. For structurally radiated noise, the sound field is directly coupled to the structural motion. Therefore the impact response should be analyzed. It is well known that the presence of the delamination in a composite laminate introduces a local flexibility which changes the dynamic characteristic of the structure. The 2-D simplified delamination model is used to analyze the impact response. And the 3-D non-linear finite element model is developed using gap element to avoid the overlap and penetration between the upper and lower sub-laminates at delamination region. Predicted impact response using 2-D equivalent delamination model are compared with the numerical ones from the 3-D non-linear finite element model.

  • PDF

High-velocity ballistics of twisted bilayer graphene under stochastic disorder

  • Gupta, K.K.;Mukhopadhyay, T.;Roy, L.;Dey, S.
    • Advances in nano research
    • /
    • v.12 no.5
    • /
    • pp.529-547
    • /
    • 2022
  • Graphene is one of the strongest, stiffest, and lightest nanoscale materials known to date, making it a potentially viable and attractive candidate for developing lightweight structural composites to prevent high-velocity ballistic impact, as commonly encountered in defense and space sectors. In-plane twist in bilayer graphene has recently revealed unprecedented electronic properties like superconductivity, which has now started attracting the attention for other multi-physical properties of such twisted structures. For example, the latest studies show that twisting can enhance the strength and stiffness of graphene by many folds, which in turn creates a strong rationale for their prospective exploitation in high-velocity impact. The present article investigates the ballistic performance of twisted bilayer graphene (tBLG) nanostructures. We have employed molecular dynamics (MD) simulations, augmented further by coupling gaussian process-based machine learning, for the nanoscale characterization of various tBLG structures with varying relative rotation angle (RRA). Spherical diamond impactors (with a diameter of 25Å) are enforced with high initial velocity (Vi) in the range of 1 km/s to 6.5 km/s to observe the ballistic performance of tBLG nanostructures. The specific penetration energy (Ep*) of the impacted nanostructures and residual velocity (Vr) of the impactor are considered as the quantities of interest, wherein the effect of stochastic system parameters is computationally captured based on an efficient Gaussian process regression (GPR) based Monte Carlo simulation approach. A data-driven sensitivity analysis is carried out to quantify the relative importance of different critical system parameters. As an integral part of this study, we have deterministically investigated the resonant behaviour of graphene nanostructures, wherein the high-velocity impact is used as the initial actuation mechanism. The comprehensive dynamic investigation of bilayer graphene under the ballistic impact, as presented in this paper including the effect of twisting and random disorder for their prospective exploitation, would lead to the development of improved impact-resistant lightweight materials.

A Study on the Infiltration Porperties of Cement Grout Material (시멘트계 주입재의 침투특성에 관한 실험적 연구)

  • 천병식;신동훈;이종욱;김진춘;이준우;안익균;이승범
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.297-304
    • /
    • 2002
  • This study is about penetrability of Micro Cement(MC) used for ground improvement. In this study, the characteristics of chemical grouting such as solidification, penetrability were analyzed experimentally by changing permeability of ground, grain size and relative density of grout material. For evaluating applicability of grout material, solidification test and penetrability test were performed. From the results of the tests, effective solidification ratio and penetrability ratio of MC was each 75%, 86% to be excellent when ground permeability was in the range of 10$^{-2}$ and 10$^{-4}$ cm/sec. Otherwise, those of Ordinary Portland Cement(OPC) were both lower than 50% to be poor. When penetrability of grout material is needed for improvement of dam foundation and soft ground, application of MC Is much superior to that of the other materials. The results of the grouting tests in the water flowing ground show that solidification effect of long gel-time grout material is excellent as injection pressure increases when groundwater velocity is relatively low. But when groundwater velocity is relatively high, solidification effect of long gel-time grout material is very poor because most grout materials are outflowed. Therefore, as groundwater velocity is high, effective solidification ratio of long gel-time grout material is better than that of short gel-time grout material, also penetration distance of long gel-time grout material is longer than that of short gel-time grout material.

  • PDF

Characteristics of Synchronous and Asynchronous modes of fluctuations in Francis turbine draft tube during load variation

  • Goyal, Rahul;Cervantes, Michel J.;Gandhi, Bhupendra K.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.10 no.2
    • /
    • pp.164-175
    • /
    • 2017
  • Francis turbines are often operated over a wide load range due to high flexibility in electricity demand and penetration of other renewable energies. This has raised significant concerns about the existing designing criteria. Hydraulic turbines are not designed to withstand large dynamic pressure loadings on the stationary and rotating parts during such conditions. Previous investigations on transient operating conditions of turbine were mainly focused on the pressure fluctuations due to the rotor-stator interaction. This study characterizes the synchronous and asynchronous pressure and velocity fluctuations due to rotor-stator interaction and rotating vortex rope during load variation, i.e. best efficiency point to part load and vice versa. The measurements were performed on the Francis-99 test case. The repeatability of the measurements was estimated by providing similar movement to guide vanes twenty times for both load rejection and load acceptance operations. Synchronized two dimensional particle image velocimetry and pressure measurements were performed to investigate the dominant frequencies of fluctuations, vortex rope formation, and modes (rotating and plunging) of the rotating vortex rope. The time of appearance and disappearance of rotating and plunging modes of vortex rope was investigated simultaneously in the pressure and velocity data. The asynchronous mode was observed to dominate over the synchronous mode in both velocity and pressure measurements.