• Title/Summary/Keyword: Velocity control

Search Result 3,482, Processing Time 0.032 seconds

Evaluation of Correlation between Chlorophyll-a and Multiple Parameters by Multiple Linear Regression Analysis (다중회귀분석을 이용한 낙동강 하류의 Chlorophyll-a 농도와 복합 영향인자들의 상관관계 분석)

  • Lim, Ji-Sung;Kim, Young-Woo;Lee, Jae-Ho;Park, Tae-Joo;Byun, Im-Gyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.5
    • /
    • pp.253-261
    • /
    • 2015
  • In this study, Chlorophyll-a (chl-a) prediction model and multiple parameters affecting algae occurrence in Mulgeum site were evaluated by statistical analysis using water quality, hydraulic and climate data at Mulgeum site (1998~2008). Before the analysis, control chart method and effect period of typhoon were adopted for improving reliability of the data. After data preprocessing step two methods were used in this study. In method 1, chl-a prediction model was developed using preprocessed data. Another model was developed by Method 2 using significant parameters affecting chl-a after data preprocessing step. As a result of correlation analysis, water temperature, pH, DO, BOD, COD, T-N, $NO_3-N$, $PO_4-P$, flow rate, flow velocity and water depth were revealed as significant multiple parameters affecting chl-a concentration. Chl-a prediction model from Method 1 and 2 showed high $R^2$ value with 0.799 and 0.790 respectively. Validation for each prediction model was conducted with the data from 2009 to 2010. Training period and validation period of Method 1 showed 20.912 and 24.423 respectively. And Method 2 showed 21.422 and 26.277 in each period. Especially BOD, DO and $PO_4-P$ played important role in both model. So it is considered that analysis of algae occurrence at Mulgeum site need to focus on BOD, DO and $PO_4-P$.

The Research to Correct Overestimation in TOF-MRA for Severity of Cerebrovascular Stenosis (3D-SPACE T2 기법에 의한 TOF-MRA검사 시 발생하는 혈관 내 협착 정도의 측정 오류 개선에 관한 연구)

  • Han, Yong Su;Kim, Ho Chul;Lee, Dong Young;Lee, Su Cheol;Ha, Seung Han;Kim, Min Gi
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.12
    • /
    • pp.180-188
    • /
    • 2014
  • It is very important accurate diagnosis and quick treatment in cerebrovascular disease, i.e. stenosis or occlusion that could be caused by risk factors such as poor dietary habits, insufficient exercise, and obesity. Time-of-flight magnetic resonance angiography (TOF-MRA), it is well known as diagnostic method without using contrast agent for cerebrovascular disease, is the most representative and reliable technique. Nevertheless, it still has measurement errors (also known as overestimation) for length of stenosis and area of occlusion in celebral infarction that is built by accumulation and rupture of plaques generated by hemodynamic turbulence. The purpose of this study is to show clinical trial feasibility for 3D-SPACE T2, which is improved by using signal attenuation effects of fluid velocity, in diagnosis of cerebrovascular disease. To model angiostenosis, strictures of different proportions (40%, 50%, 60%, and 70%) and virtual blood stream (normal saline) of different velocities (0.19 ml/sec, 1.5 ml/sec, 2.1 ml/sec, and 2.6 ml/sec) by using dialysis were made. Cross-examinations were performed for 3D-SPACE T2 and TOF-MRA (16 times each). The accuracy of measurement for length of stenosis was compared in all experimental conditions. 3D-SPACE 2T has superiority in terms of accuracy for measurements of the length of stenosis, compared with TOF-MRA. Also, it is robust in fast blood stream and large stenosis than TOF-MRA. 3D-SPACE 2T will be promising technique to increase diagnosis accuracy in narrow complex lesions as like two cerebral small vessels with stenosis, created by hemodynamic turbulence.

Development of Dynamic Kidney Phantom System and its Evaluation of Usability of Application in Nuclear Medicine (핵의학 동적 신장팬텀시스템 개발 적용의 유용성 평가)

  • Park, Hoon-Hee;Lee, Juyoung;Kim, Sang-Wook;Lyu, Kwang Yeul;Jin, Gye Hwan
    • Journal of radiological science and technology
    • /
    • v.36 no.1
    • /
    • pp.49-55
    • /
    • 2013
  • Currently, commercially available phantom can reproduce and evaluate only a static situation, the study is incomplete research on phantom and system which is can confirmed functional situation in the kidney by time through dynamic phantom and blood flow velocity, various difference according to the amount of radioactive. Therefore, through this study, it has produced the dynamic kidney phantom to reproduce images through the dynamic flow of the kidney, it desires to evaluate the usefulness of nuclear medicine imaging. The production of the kidney phantom was fabricated based on the normal adult kidney, in order to reproduce the dynamic situation based on the fabricated kidney phantom, in this study, it was applied the volume pump that can adjust the speed of blood flow, so it can be integrated continuously radioactive isotopes in the kidney by using $^{99m}Tc$-pertechnate. Used the radioactive isotope was supplied through the two pump. It was confirmed the changes according to the infusion rate, radioactive isotopes and the different injection speeds on the left and right, analysis of the acquired images was done by drawn five times ROI in order to check the reproducibility of each on the front and rear of the kidney and bladder. Depending on the speed of injection, radioisotope was a lot of integrated and emissions up when adjusting the pressure of the pump as 30 stroke, it was the least integrated and emissions up when adjusting as 40 stroke. The integration of the left & right kidney was not reached in the amount of the highest when adjusting as 10 stroke. In the changes according to the amount of the radioactive isotope, 0.6 mCi(22.2 MBq), 0.8 mCi (29.6 MBq)was showed up similar tendency but, in the result of the different injection 0.8 mCi, it was showed up counts close to double of 0.6 mCi. In the result of the differently injection speed of the left & right kidney, as a result of different conditions that injection speed was 20 stroke through left kidney phantom, the injection speed was 30 stroke through right kidney phantom, it was enough difference in the resulting image can be easily distinguished with the naked eye. Through this study, the results showed that the dynamic kidney phantom system is able to similarly reproduce renogram in the actual clinical practice. Especially, the depicted over time for the flow to be excreted through the kidney into the bladder was adequately reproduce, it is expected to be utilized as basic data to check the quality of the dynamic images. In addition, it is considered to help in the field of functional imaging and quality control.

Study on Ventilation Efficiency of A Naturally Ventilated Broiler House-( I ) Summer Season (자연환기식 육계사내의 환기효율성 조사연구-( I )하절기)

  • 이인복;유병기;정문성;윤진하;전종길;김경원;성시흥
    • Journal of Animal Environmental Science
    • /
    • v.9 no.1
    • /
    • pp.9-18
    • /
    • 2003
  • Most of broiler houses in Korea have the trouble of environmental control such as suitability, stability, and uniformity of internal climate, resulting in serious stress on chickens. Accordingly, it is very urgent to develop optimum designs of naturally and mechanically ventilated broiler houses for Korean climate. In this study, the internal climates such as air temperature, humidity, dust, ammonia gas, and air velocity were measured at a naturally ventilated broiler house. The data were collected during summer season including local weather data. It was found that the difference between measured and optimum air temperatures was $14.0^{\circ}C$ in maximum during the summer time. The daily maximum range of internal averaged air temperature was found $10.5^{\circ}C$ while the uniformity was $5.2^{\circ}C$ in maximum. The maximum, average, and minimum internal averaged relative humidity were 89.3%, 73.7%, and 49.2%, respectively while locally measured were 95.1% and 47.2%, respectively in maximum and minimum. Considering Temperature-humidity index, during summer season, over 97% of totally rearing period was shown that counter plan is needed for thermal stress while it was very dangerous situation for 22% of the rearing period. The ammonia gas and dust concentrations were seriously affected by the broilers activity, growth level, and relative humidity.

  • PDF

Effect of 10 Weeks Smart Machine Circulation Exercise on Body Composition, Lung Function, Blood Lipids and Insulin Resistance in Obesity Middle-aged Women (10주간 스마트머신 순환운동이 비만 중년여성의 체조성, 폐기능, 혈중지질 및 인슐린 저항성에 미치는 영향)

  • Kim, Min-Chan;Ha, Soo-Min;Koh, Su-Han;Kim, Jong-Won;Kim, Do-Yeon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.4
    • /
    • pp.951-962
    • /
    • 2021
  • The purpose of this study was to analyze the effects of smart machine circulation exercise on body composition, lung function, blood lipid and insulin resistance in obesity middle-aged women among 40-60 years by dividing them into a smart machine circulation exercise group(n=8), and control group(n=6). The smart machine circulation exercise program included 55-minutes sessions thrice each week at the following intensities: The strength of aerobic exercise is applied to smart machines by linking the smart machine with the POLAR T31; the 1-4 week is 40-50%HRR, 5-8 week is 50-60%HRR, and 9-10 week is 60-70%HRR. The strength of the resistance exercise was tested using a smart machine based on the constant velocity motion, and then, using the 1-RM data value, applied 40% 1-RM for 1-4 weeks, 60% 1-RM for 5-8 weeks, and 80% 1-RM for 9-10 week. As a results, body composition indicated that weight, BMI, %BF, WHR had a significant interaction effect. Lung function indicated that FVC levels significantly changes in the exercise group and the between groups difference in changes at 10week was significant. Also, FVC and FEV1 significantly showed interaction effect. TC, TG and HDL-C levels significantly changes in smart machine circulation exercise group and the between-group difference in changes after 10 weeks was significant. TC, TG and HDL-C significantly showed interaction effect. Insulin resistance demonstrated that Insulin, Glucose and HOMA-IR levels significantly showed difference over 10 weeks between group. Therefore, the 10 weeks smart machine circulation exercise positively effects on the body composition, lung function, blood lipids, and insulin resistance in obesity middle-aged women and this smart machine circulation exercise can improve their obesity and prevent obesity.

Effects of l-arginine supplementation with high-intensity training on muscle damage and fatigue index and athletic performance in Canoe Athletes (L-arginine 섭취가 고강도 훈련 프로그램에 따른 카누선수의 근 손상 지표, 피로 물질 및 경기력 향상에 미치는 영향)

  • Jung, Jong-Hwan;Kang, Eun-Bum;Kim, Chang-Hwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.3
    • /
    • pp.942-953
    • /
    • 2019
  • The objective of this study was to evaluate the effects of L-arginine supplementation on muscle damage and fatigue indices and athletic performance improvement of canoe athletes after conducting a high-intensity training program. To achieve the objective, this study applied a high-intensity training program to seven high school canoe athletes. The high-intensity training program is composed of aerobic exercise sessions (twice per week; Tuesday and Thursday), anaerobic exercise sessions (three times per week; Monday, Wednesday, and Friday), and flexibility exercise sessions (five times per week). During the 6 week high-intensity training program, drug ingestion (L-arginine or placebo) was conducted in the first two weeks, wash out (two weeks) followed it, and drug ingestion (L-arginine or placebo) was carried out again in the last two weeks. The crossover design was used for the experiment so all study subjects were assigned to either the L-arginine intake group (the treatment group) or the placebo group (the control group). Each subject ingested 3g per day. This study confirmed the significant effects of L-arginine supplementation on muscle damage indices, fatigue indices, and antioxidants using blood samples. Additionally, FMD was analyzed to evaluate vascular endothelial cell functions and canoe performance was examined using the canoe ergometer. The results of this study showed that L-arginine intake did not have direct effects on the levels of ammonia, IP, and CK. The level of LDH decreased significantly more in the ARG group than in the PLA group due to L-arginine supplementation. Moreover, L-arginine supplementation did not change total NO, d-ROMs, BAP, and FMD significantly. Lastly, the results of the 500m canoe ergometer, which was conducted to evaluate the canoe performance, revealed that L-arginine did not have direct effects on total time, stroke distance, and mean velocity. However, L-arginine supplementation significantly improved muscle damage indices, fatigue indices, antioxidants, FMD, and canoe performance. Therefore, it is believed that additional studies are needed for examining the potential effects of L-arginine supplementation athletic performance enhancement.

Comparison of Effects of Normothermic and Hypothermic Cardiopulmonary Bypass on Cerebral Metabolism During Cardiac Surgery (체외순환 시 뇌 대사에 대한 정상 체온 체외순환과 저 체온 체외순환의 임상적 영향에 관한 비교연구)

  • 조광현;박경택;김경현;최석철;최국렬;황윤호
    • Journal of Chest Surgery
    • /
    • v.35 no.6
    • /
    • pp.420-429
    • /
    • 2002
  • Moderate hypothermic cardiopulmonary bypass (CPB) has commonly been used in cardiac surgery. Several cardiac centers recently practice normothermic CPB in cardiac surgery, However, the clinical effect and safety of normothermic CPB on cerebral metabolism are not established and not fully understood. This study was prospectively designed to evaluate the clinical influence of normothermic CPB on brain metabolism and to compare it with that of moderate hypothermic CPB. Material and Method: Thirty-six adult patients scheduled for elective cardiac surgery were randomized to receive normothermic (nasopharyngeal temperature >34.5 $^{\circ}C$, n=18) or hypothermic (nasopharyngeal temperature 29~3$0^{\circ}C$, n=18) CPB with nonpulsatile pump. Middle cerebral artery blood flow velocity (VMCA), cerebral arteriovenous oxygen content difference (CAVO$_{2}$), cerebral oxygen extraction (COE), modified cerebral metabolic rate for oxygen (MCMRO$_{2}$), cerebral oxygen transport (TEO$_{2}$), cerebral venous desaturation (oxygen saturation in internal jugular bulb blood$\leq$50 %), and arterial and internal jugular bulb blood gas analysis were measured during six phases of the operation: Pre-CPB (control), CPB-10 min, Rewarm-1 (nasopharyngeal temperature 34 $^{\circ}C$ in the hypothermic group), Rewarm-2 (nasopharyngeal temperature 37 $^{\circ}C$ in the both groups), CPB-off and Post-CPB (skin closure after CPB-off). Postoperaitve neuropsychologic complications were observed in all patients. All variables were compared between the two groups. Result: VMCA at Rewarm-2 was higher in the hypothermic group (153.11$\pm$8.98%) than in the normothermic group (131.18$\pm$6.94%) (p<0.05). CAVO$_{2}$ (3.47$\pm$0.21 vs 4.28$\pm$0.29 mL/dL, p<0.05), COE (0.30$\pm$0.02 vs 0.39$\pm$0.02, p<0.05) and MCMRO$_{2}$ (4.71 $\pm$0.42 vs 5.36$\pm$0.45, p<0.05) at CPB-10 min were lower in the hypothermic group than in the normothermic group. The hypothermic group had higher TEO$_{2}$ than the normothermic group at CPB-10 (1,527.60$\pm$25.84 vs 1,368.74$\pm$20.03, p<0.05), Rewarm-2 (1,757.50$\pm$32.30 vs 1,478.60$\pm$27.41, p<0.05) and Post-CPB (1,734.37$\pm$41.45 vs 1,597.68$\pm$27.50, p<0.05). Internal jugular bulb oxygen tension (40.96$\pm$1.16 vs 34.79$\pm$2.18 mmHg, p<0.05), saturation (72.63$\pm$2.68 vs 64.76$\pm$2.49 %, p<0.05) and content (8.08$\pm$0.34 vs 6.78$\pm$0.43 mL/dL, p<0.05) at CPB-10 were higher in the hypothermic group than in the normothermic group. The hypothermic group had less incidence of postoperative neurologic complication (delirium) than the normothermic group (2 vs 4 patients, p<0.05). Lasting periods of postoperative delirium were shorter in the hypothermic group than in the normothermic group (60 vs 160 hrs, p<0.01). Conclusion: These results indicate that normothermic CPB should not be routinely applied in all cardiac surgery, especially advanced age or the clinical situations that require prolonged operative time. Moderate hypothermic CPB may have beneficial influences relatively on brain metabolism and postoperative neuropsychologic outcomes when compared with normothermic CPB.

Experimental Study of Flip-Bucket Type Hydraulic Energy Dissipator on Steep slope Channel (긴구배수로 감세공의 Filp Bucket형 이용연구)

  • 김영배
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.13 no.1
    • /
    • pp.2206-2217
    • /
    • 1971
  • Spillway and discharge channel of reservoirs require the Control of Large volume of water under high pressure. The energies at the downstream end of spillway or discharge channel are tremendous. Therefore, Some means of expending the energy of the high-velocity flow is required to prevent scour of the riverbed, minimize erosion, and prevent undermining structures or dam it self. This may be accomplished by Constructing an energy dissipator at the downstream end of spillway or discharge channel disigned to dissipated the excessive energy and establish safe flow Condition in the outlet channel. There are many types of energy dissipators, stilling basins are the most familar energy dissipator. In the stilling basin, most energies are dissipated by hydraulic jump. stilling basins have some length to cover hydraulic jump length. So stilling basins require much concrete works and high construction cost. Flip bucket type energy dissipators require less construction cost. If the streambed is composed of firm rock and it is certain that the scour will not progress upstream to the extent that the safety of the structure might be endangered, flip backet type energy dissipators are the most recommendable one. Following items are tested and studied with bucket radius, $R=7h_2$,(medium of $4h_2{\geqq}R{\geqq}10h_2$). 1. Allowable upstream channel slop of bucket. 2. Adequate bucket lip angle for good performance of flip bucket. Also followings are reviwed. 1. Scour by jet flow. 2. Negative pressure distribution and air movement below nappe flow. From the test and study, following results were obtained. 1. Upstream channel slope of bucket (S=H/L) should be 0.25<H/L<0.75 for good performance of flip bucket. 2. Adequated lip angle $30^{\circ}{\sim}40^{\circ}$ are more reliable than $20^{\circ}{\sim}30^{\circ}$ for the safety of structures.

  • PDF

Analysis of Greenhouse Thermal Environment by Model Simulation (시뮬레이션 모형에 의한 온실의 열환경 분석)

  • 서원명;윤용철
    • Journal of Bio-Environment Control
    • /
    • v.5 no.2
    • /
    • pp.215-235
    • /
    • 1996
  • The thermal analysis by mathematical model simulation makes it possible to reasonably predict heating and/or cooling requirements of certain greenhouses located under various geographical and climatic environment. It is another advantages of model simulation technique to be able to make it possible to select appropriate heating system, to set up energy utilization strategy, to schedule seasonal crop pattern, as well as to determine new greenhouse ranges. In this study, the control pattern for greenhouse microclimate is categorized as cooling and heating. Dynamic model was adopted to simulate heating requirements and/or energy conservation effectiveness such as energy saving by night-time thermal curtain, estimation of Heating Degree-Hours(HDH), long time prediction of greenhouse thermal behavior, etc. On the other hand, the cooling effects of ventilation, shading, and pad ||||&|||| fan system were partly analyzed by static model. By the experimental work with small size model greenhouse of 1.2m$\times$2.4m, it was found that cooling the greenhouse by spraying cold water directly on greenhouse cover surface or by recirculating cold water through heat exchangers would be effective in greenhouse summer cooling. The mathematical model developed for greenhouse model simulation is highly applicable because it can reflects various climatic factors like temperature, humidity, beam and diffuse solar radiation, wind velocity, etc. This model was closely verified by various weather data obtained through long period greenhouse experiment. Most of the materials relating with greenhouse heating or cooling components were obtained from model greenhouse simulated mathematically by using typical year(1987) data of Jinju Gyeongnam. But some of the materials relating with greenhouse cooling was obtained by performing model experiments which include analyzing cooling effect of water sprayed directly on greenhouse roof surface. The results are summarized as follows : 1. The heating requirements of model greenhouse were highly related with the minimum temperature set for given greenhouse. The setting temperature at night-time is much more influential on heating energy requirement than that at day-time. Therefore It is highly recommended that night- time setting temperature should be carefully determined and controlled. 2. The HDH data obtained by conventional method were estimated on the basis of considerably long term average weather temperature together with the standard base temperature(usually 18.3$^{\circ}C$). This kind of data can merely be used as a relative comparison criteria about heating load, but is not applicable in the calculation of greenhouse heating requirements because of the limited consideration of climatic factors and inappropriate base temperature. By comparing the HDM data with the results of simulation, it is found that the heating system design by HDH data will probably overshoot the actual heating requirement. 3. The energy saving effect of night-time thermal curtain as well as estimated heating requirement is found to be sensitively related with weather condition: Thermal curtain adopted for simulation showed high effectiveness in energy saving which amounts to more than 50% of annual heating requirement. 4. The ventilation performances doting warm seasons are mainly influenced by air exchange rate even though there are some variations depending on greenhouse structural difference, weather and cropping conditions. For air exchanges above 1 volume per minute, the reduction rate of temperature rise on both types of considered greenhouse becomes modest with the additional increase of ventilation capacity. Therefore the desirable ventilation capacity is assumed to be 1 air change per minute, which is the recommended ventilation rate in common greenhouse. 5. In glass covered greenhouse with full production, under clear weather of 50% RH, and continuous 1 air change per minute, the temperature drop in 50% shaded greenhouse and pad & fan systemed greenhouse is 2.6$^{\circ}C$ and.6.1$^{\circ}C$ respectively. The temperature in control greenhouse under continuous air change at this time was 36.6$^{\circ}C$ which was 5.3$^{\circ}C$ above ambient temperature. As a result the greenhouse temperature can be maintained 3$^{\circ}C$ below ambient temperature. But when RH is 80%, it was impossible to drop greenhouse temperature below ambient temperature because possible temperature reduction by pad ||||&|||| fan system at this time is not more than 2.4$^{\circ}C$. 6. During 3 months of hot summer season if the greenhouse is assumed to be cooled only when greenhouse temperature rise above 27$^{\circ}C$, the relationship between RH of ambient air and greenhouse temperature drop($\Delta$T) was formulated as follows : $\Delta$T= -0.077RH+7.7 7. Time dependent cooling effects performed by operation of each or combination of ventilation, 50% shading, pad & fan of 80% efficiency, were continuously predicted for one typical summer day long. When the greenhouse was cooled only by 1 air change per minute, greenhouse air temperature was 5$^{\circ}C$ above outdoor temperature. Either method alone can not drop greenhouse air temperature below outdoor temperature even under the fully cropped situations. But when both systems were operated together, greenhouse air temperature can be controlled to about 2.0-2.3$^{\circ}C$ below ambient temperature. 8. When the cool water of 6.5-8.5$^{\circ}C$ was sprayed on greenhouse roof surface with the water flow rate of 1.3 liter/min per unit greenhouse floor area, greenhouse air temperature could be dropped down to 16.5-18.$0^{\circ}C$, whlch is about 1$0^{\circ}C$ below the ambient temperature of 26.5-28.$0^{\circ}C$ at that time. The most important thing in cooling greenhouse air effectively with water spray may be obtaining plenty of cool water source like ground water itself or cold water produced by heat-pump. Future work is focused on not only analyzing the feasibility of heat pump operation but also finding the relationships between greenhouse air temperature(T$_{g}$ ), spraying water temperature(T$_{w}$ ), water flow rate(Q), and ambient temperature(T$_{o}$).

  • PDF

Cultural Practices for Reducing Cold Wind Damage of Rice Plant in Eastern Coastal Area of Korea (동해안지대 도작의 냉조풍피해와 피해경감대책)

  • 이승필;김칠용
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.36 no.5
    • /
    • pp.407-428
    • /
    • 1991
  • The eastern coastal area having variability of climate is located within Taebaek mountain range and the east coast of Korea. It is therefore ease to cause the wind damages in paddy field during rice growing season. The wind damages to rice plant in this area were mainly caused by the Fohn wind (dry and hot wind) blowing over the Taebaek mountain range and the cold humid wind from the coast. The dry wind cause such as the white head, broken leaves, cut-leaves, dried leaves, shattering of grain, glume discolouration and lodging, On the other hand the cold humid wind derived from Ootsuku air mass in summer cause such symptom as the poor rice growth, degeneration of rachis brenches and poor ripening. To minimize the wind damages and utilize as a preparatory data for wind injury of rice in future, several experiments such as the selection of wind resistant variety to wind damage, determination of optimum transplanting date, improvement of fertilizer application methods, improvement of soils and effect of wind break net were carried out for 8 years from 1982 to 1989 in the eastern coastal area. The results obtained are summarized as follows. 1. According to available statisical data from Korean meteorological services (1954-1989) it is apperent that cold humid winds frequently cause damage to rice fields from August 10th to September 10th, it is therefore advisable to plan rice cultivation in such a way that the heading date should not be later than August 10th. 2. During the rice production season, two winds cause severe damage to the rice fields in eastern coastal area of Korea. One is the Fohn winds blowing over the Taebaek mountain range and the other is the cold humid wind form the coast. The frequency of occurrence of each wind was 25%. 3. To avoid damage caused by typhoon winds three different varieties of rice were planted at various areas. 4. In the eastern coastal area of Korea, the optimum ripening temperature for rice was about 22.2$^{\circ}C$ and the optimum heading date wad August 10th. The optimum transplanting time for the earily maturity variety was June 10th., medium maturity variety was May 20th and that of late maturity was May 10th by means of growing days degree (GDD) from transplanting date to heading date. 5.38% of this coastal area is sandy loamy soil while 28% is high humus soil. These soil types are very poor for rice cultivation. In this coastal area, the water table is high, the drainage is poor and the water temperature is low. The low water temperature makes it difficult for urea to dissolve, as a result rice growth was delayed, and the rice plant became sterile. But over application of urea resulted in blast disease in rice plants. It is therefore advise that Ammonium sulphate is used in this area instead of urea. 6. The low temperature of the soil inhibits activities of microorganism for phosphorus utilization so the rice plant could not easily absorb the phosphorus in the soil. Therefore phosphorus should be applied in splits from transplanting to panicle initiation rather than based application. 7. Wind damage was severe in the sandy loamy soil as compared to clay soils. With the application of silicate. compost and soil from mointain area. the sand loamy soil was improved for rice grain colour and ripening. 8. The use of wind break nets created a mocro-climate such as increased air. soil and water temperature as well as the reduction of wind velocity by 30%. This hastened rice growth, reduced white head and glume discolouration. improved rice quality and increased yield. 9. Two meter high wind break net was used around the rice experimental fields and the top of it. The material was polyethylene sheets. The optimum spacing was 0.5Cm x 0.5Cm. and that of setting up the wind break net was before panicle initiation. With this set up, the field was avoided off th cold humid wind and the Fohn. The yield in the treatment was 20% higher than the control. 10. After typhoon, paddy field was irrigated deeply and water was sprayed to reduce white head, glume discolouration, so rice yield was increased because of increasing ripening ratio and 1, 000 grain weight.

  • PDF